• Title/Summary/Keyword: poly(${\epsilon}$-caprolactone)

Search Result 9, Processing Time 0.028 seconds

Surface Hydrolysis of Fibrous Poly(${\epsilon}$-caprolactone) Scaffolds for Enhanced Osteoblast Adhesion and Proliferation

  • Park, Jeong-Soo;Kim, Jung-Man;Lee, Sung-Jun;Lee, Se-Geun;Jeong, Young-Keun;Kim, Sung-Eun;Lee, Sang-Cheon
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.424-429
    • /
    • 2007
  • A procedure for the surface hydrolysis of an electrospun poly(${\epsilon}$-caprolactone) (PCL) fibrous scaffold was developed to enhance the adhesion and proliferation of osteoblasts. The surface hydrolysis of fibrous scaffolds was performed using NaOH treatment for the formation of carboxyl groups on the fiber surfaces. The hydrolysis process did not induce deformation of the fibers, and the fibers retained their diameter. The cell seeding density on the NaOH-treated PCL fibrous scaffolds was more pronounced than on the non-treated PCL fibers used as a control. The alkaline phosphatase activity, osteocalcin and a mineralization assay strongly supported that the surface-hydrolyzed PCL fibrous scaffolds provided more favorable environments for the proliferation and functions of osteoblasts compared to the non-treated PCL fibrous scaffolds use as a control.

Full-atomistic simulations of poly(ϵ-caprolactone) diol models with CVFF and CGenFF

  • Chang, Yin;Chang, Shu-Wei
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.4
    • /
    • pp.327-340
    • /
    • 2016
  • Poly(${\epsilon}$-caprolactone) (PCL) diol, with good biodegradation and biocompatibility, is one of the widely used soft segments (SSs) in composing bio-polyester-urethanes (Bio-PUs), which show great potential in both biomedical and tissue engineering applications. Properties of Bio-PUs are tunable by combining SS monomers with different molecular weights, structures, modifications, and ratio of components. Although numbers of research have reported many Bio-PUs properties, few studies have been done at the molecular scale. In this study, we use molecular dynamic (MD) simulation to construct atomistic models for two commonly used PCL diol SSs with different molecular weights 1247.58 Da and 1932.42 Da. We compare the simulation results by using two widely used classical force fields for organic molecules: Consistent Valence Force Field (CVFF) and CHARMM General Force Field (CGenFF), and discuss the validity and accuracy. Melt density, volume, polymer conformations, transition temperature, and mechanical properties of PCL diols are calculated and compared with experiments. Our results show that both force fields provide accurate predictions on the properties of PCL diol system at the molecular scale and could help the design of future Bio-PUs.

Stabilization of Enzyme in "Solvophobically" Controlled Polymer Microcapsules ("솔보포빅"한 고분자 마이크로 캡슐을 이용한 효소 안정화에 관한 연구)

  • Kim, Yong-Jin;Kim, Jin-Woong;Kim, Jin-Oh;Kim, Jin-Woo;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.29-33
    • /
    • 2006
  • This article describes an enzyme stabilization method that allows the use of enzymes irrespective of environmental factors, especially heat, while maintaining their activity for a long time. We have designed enzyme microcapsules that consist of papain enzyme cores, poly(propylene glycol) interlayers, and poly(${\epsilon}-caprolactone$) walls. By confocal laser scanning microscopy measurements and the thermal stability of papain-loaded microcapsules, it is demonstrated that the papain is surrounded by a hydrophobic polyol layer and stabilized by the exclusive volume effect. In our study, improved thermal stability can be obtained by using more hydrophobic long-chained polyols, which is understood to be attributed to the effective formation of a hydrophobic polyol layer between the papain and the polymer wall by means of conformational anchoring in the interface.

Drug Release from Bioerodible Hydrogels Composed of $Poly-{\varepsilon}-Caprolactone/poly(Ethylene{\;}glycol)$ Macromer Semiinterpenhetrating Polymer Networks

  • Kim, Sung-Ho;Ha, Jeong-Hun;Jung, Yong-Jae;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.18 no.1
    • /
    • pp.18-21
    • /
    • 1995
  • Poly(ethylene glycol)(PEG) macrocers teminated with acrylate groups and semi-interpenetrating polymer networks (IPNs) composed of poly-.epsilon.-capolactone(PCL) and PEG macromer were syntheswized with the aim of obtaining a bioerodible hydrogel that could be used to release drugs for implantable delivery system. Polymerization of PEG macromer resulted in the formation of cross-linked gels due to the multifunctionality of macromer. Non-crosslinked PCL chains were interpenetrated into the cross-linked three-dimensions networks of PEG. The IPNs, largw drug loading lower concentration of PEG macromer in the IPNs concentration and the higher molecular weight of PEG macromer. Also, 5-FU was more fast released than hydrocortisone to the increased water solubility.

  • PDF

Synthesis of Methoxy Poly(ethylene glycol)/Polyesters Diblock Copolymers and Evaluation of Micellar Characterization as Drug Carrier (메톡시 폴리(에틸렌 글리콜)/폴리에스테르 블록공중합체의 합성 및 미셀 특성 비교)

  • Hyun, Hoon;Yang, Jae-Chan;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.464-470
    • /
    • 2006
  • Diblock copolymers consisting of methoxy Poly (ethylene glycol) (MPEG) and poly (${\epsilon}-ca$ prolactone) (PCL), poly(${\delta}-valerolactone$) (PVL), poly(L-lactide) (PLLA), or poly(L-lactide-co-glycolide) (PLGA) were prepared to compare the characterization of diblock copolymers as a drug carrier. MPEG-PCL, MPEG-PVL, MPEG-PLLA, and MPEG-PLGA diblock copolymers were synthesized by the ring-opening polymerization of ${\epsilon}$-caprolactone or ${\delta}$-valerolactone in the presence of $HCl{\cdot}Et_2O$ as a monomer activator at room temperature and by the ring-opening polymerization of L-lactide or a mixture of L-lactide and glycolide in the presence of stannous octoate at $130^{\circ}C$, respectively. The synthesized diblock copolymers were characterized with $^1H-NMR$, GPC, DSC, and XRD. The micellar characterization of MPEG-polyester diblock copolymers in an aqueous phase was carried out by using NMR, dynamic light scattering, AFM, and fluorescence techniques. Most micelles exhibited a spherical shape in AFM. Thus, ore confirmed that the micelles formed with MPEG-polyester diblock copolymers have possibility as a potential hydrophobic drug delivery vehicle because a hydrophobic drug could be preferentially distributed in the micelle core.

In vitro methods to study the vascularization of natural and synthetic biomedical polymers

  • Kirkpatrick C. James;Fuchs Sabine;Motta Antonella;Santos Marina;Hermanns M. Iris;Unger Ronald E.;Reis Rui;Migliaresi Claudio
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.46-47
    • /
    • 2006
  • Vascularization is essential for success in regenerative medicine. We have developed in vitro models to study how human microvascular endothelial cells (EC) and endothelial progenitor cells (EPC) colonize polymer scaffolds and express the endothelial phenotype, including angiogenesis. Examples are given of supportive growth and differeniation of EC on microfibre meshes of the silk protein fibroin and blends of starch with poly(epsilon-caprolactone), phenotypic markers being studied at both protein and mRNA level. Experimental models are also shown and concepts discussed to investigate how the stem cell niche, including that responsible for vascularization could be targeted, for example, by using engineered biodegradable polymer nanoparticles.

  • PDF

Removal of Pollutants using Amphiphilic Polymer Nanoparticles in Micellar-Enhanced Utrafiltration (한외여과공정에서 양쪽성 고분자 나노파티클을 이용한 오염물 제거)

  • Shim Jin-Kie;Noh Sang-Il;Lee Sang-Bong;Cho Kye-Min;Lee Young-Moo
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.59-67
    • /
    • 2006
  • Biodegradable amphiphilic polymer was synthesized for removing hydrophobic pollutants(phenol, 4-nitrophenol, benzene, and toluene) and metal ions ($Cs^{+},\;Mg^{2+},\;Cu^{2+},\;Ni^{2+}$, and $Cr^{3}$). The methoxy poly(ethylene glycol)s with different molecular weights (1,100 and 5,000) were used as a hydrophilic segment. The rejection ratio improved in the relatively high molecular weight of MPEG. The rejection ratio of biodegradable nanoparticles without pollutants was over 98%. In removal of hydrophobic pollutants, the rejection ratio increased with the hydrophobic properties. The electron valence affects the rejection ratio of metal ions, indicating rejection ratio was ordered as $3^{+}>2^{+}>1^{+}$.

Study on the development of polycaprolacton silica nanohybrid for bone substitutes (폴리카프로락톤 실리카 나노 복합체를 이용한 골이식대체재 개발에 관한 연구)

  • Jung, Keu-sik;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok;Kim, Jong-Yeo
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.425-448
    • /
    • 2004
  • A bioactive and degradable poly(epsilon -caprolactone)/silica nanohybrid(PSH) was synthesized for the application as a bone substitute. PSH was manufactured by using silica and polycaprolacton. PSH was manufactured in some composition after low crystaline apatite had been formed in simulated body fluid and, was used this study. The safety of the PSH was established by test of acute, and subacute toxicity, sensitization cytotoxicity and sterility. In order to assess activity of osteoblast, the test for attaching osteoblast, proliferation test for osteoblast, differentiating gene expression test are performed in vitro. And bone substitutes were grafted in rabbit's calvarium, during 8 weeks for testing efficacy of bone substitutes. Degree of osteogenesis and absorption of substitutes were evaluated in microscopic level. In result, it was not appeared that acute and subacute toxicity, sensitization in intradermal induction phase, topical induction phase and challenge phase. It was shown that the test can not inhibit cell proliferation. adversely, it had some ability to accelerate cell proliferation. The result of sterility test described bacterial growth was not detected in most test tube. The attaching and proliferation test of osteoblast had good results. In the result of differentiating gene expression test for osteoblast, cbfa1 and, alkaline phosphatase, osteocalcin and GAPDH were detected with mRNA analysis. In the PSH bone formation test, ostgeoblastic activity would be different as material constitution but it had good new bone formation ability except group #218. futhermore, some material had been absorbed within 8 weeks. Above studies, PSH had bio-compatibility with human body, new bone formation ability and accelerate osteoblastic activity. So it would be the efficient bone substitute material with bio-active and biodegradable.

Evaluation of tensile strength of surgical synthetic absorbable suture materials: an in vitro study

  • Khiste, Sujeet Vinayak;Ranganath, V.;Nichani, Ashish Sham
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.3
    • /
    • pp.130-135
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the tensile strength of surgical synthetic absorbable sutures over a period of 14 days under simulated oral conditions. Methods: Three suture materials (polyglycolic acid [PGA], polyglactin [PG] 910, and poly (glycolide-co-${\epsilon}$-caprolactone) [PGC]) were used in 4-0 and 5-0 gauges. 210 suture samples (35 of each material and gauge) were used. All of the samples were tested preimmersion and 1 hour and 1, 3, 7, 10, and 14 days postimmersion. The tensile strength of each suture material and gauge was assessed. The point of breakage and the resorption pattern of the sutures were also assessed. Results: During the first 24 hours of immersion, all 4-0 and 5-0 samples of PGA, PG 910, and PGC maintained their initial tensile strength. At baseline (preimmersion), there was a statistically significant (P<0.001) difference in the tensile strengths between the 4-0 and 5-0 gauge of PGA, PG 910, and PGC. PGA 4-0 showed the highest tensile strength until day 10. At 7 days, all the 4-0 sutures of the three materials had maintained their tensile strength with PGA 4-0 having significantly greater (P=0.003) tensile strength compared to PG. Conclusions: 4-0 sutures are stronger and have greater tensile strength than 5-0 sutures. The PGA 4-0 suture showed the highest tensile strength at the end of day 10.