Browse > Article

Removal of Pollutants using Amphiphilic Polymer Nanoparticles in Micellar-Enhanced Utrafiltration  

Shim Jin-Kie (New & Renewable Energy Team, Korea Institute of Industrial Technology)
Noh Sang-Il (New & Renewable Energy Team, Korea Institute of Industrial Technology, School of Chemical Engineering, Hanyang University)
Lee Sang-Bong (New & Renewable Energy Team, Korea Institute of Industrial Technology)
Cho Kye-Min (New & Renewable Energy Team, Korea Institute of Industrial Technology)
Lee Young-Moo (School of Chemical Engineering, Hanyang University)
Publication Information
Membrane Journal / v.16, no.1, 2006 , pp. 59-67 More about this Journal
Abstract
Biodegradable amphiphilic polymer was synthesized for removing hydrophobic pollutants(phenol, 4-nitrophenol, benzene, and toluene) and metal ions ($Cs^{+},\;Mg^{2+},\;Cu^{2+},\;Ni^{2+}$, and $Cr^{3}$). The methoxy poly(ethylene glycol)s with different molecular weights (1,100 and 5,000) were used as a hydrophilic segment. The rejection ratio improved in the relatively high molecular weight of MPEG. The rejection ratio of biodegradable nanoparticles without pollutants was over 98%. In removal of hydrophobic pollutants, the rejection ratio increased with the hydrophobic properties. The electron valence affects the rejection ratio of metal ions, indicating rejection ratio was ordered as $3^{+}>2^{+}>1^{+}$.
Keywords
poly(ethylene glycol); poly(${\epsilon}$-caprolactone); nanoparticle; micellar-enhanced ultrafiltration (MEUF);
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Y. Chung, J. J. Kim, K. Kim, and A. G. Fane, 'Microfiltration characteristics for emulsified oil in water', Membrane Journal, 8, 203 (1998)
2 J. F. Scamehorn and J. H. Harwell, 'Surfactant-Based Separation Processes', Dekker, New York (1989)
3 I. G. Shin, S. Y. Kim, Y. M. Lee, C. S. Cho, and Y. K. Sung, 'Methoxy $poly(ethylene\;glycol)/{\varepsilon}-caprolactone$ amphiphilic block copolymeric micelle containing indomethacin. I. Preparation and characterization', J. Controlled release, 51, 1 (1997)   DOI
4 H. W. Lee and Y. S. Mok, 'Micellar enhanced ultrafiltration of heavy metal ions using DCA', J. KSEE, 26, 76 (2004)
5 K. Y. Chung, 'Fouling characteristics in the microfiltration of mixed particle suspensions', Membrane Journal, 11, 161 (2001)
6 A. G. Fane, 'Opportunities and challenges for environmental management with membranes', Korea-Australia Joint Symposium, Seoul, 43 (1994)
7 W. Eykamp and J. Steen, 'Ultrafiltration and reverse osmosis', handbook of separation process technology, John Wiley & Sons, New York, 826 (1987)
8 M. O. Oh, W. J. Kim, and S. M. Yang, 'Effects of CPC/NaSal wormlike micelle on the removal of tert-butyl phenol using micellar-enhanced ultrafiltration', HWAHAK KONGHAK, 38, 20 (2000)
9 P. Tounissou, M. Herbrant, L. Rodehuser, and C. Tondre, 'Ultrafiltration of micellar solutions in the presence of Eeectrolytes', J. Colloid Interface Sci., 183, 484 (1996)   DOI   ScienceOn
10 S. Y. Kim, I. G. Shin, Y. M. Lee, C. S. Cho, and Y. K. Sung, 'Methoxy $poly(ethylene\;glycol)/{\varepsilon}-caprolactone$ amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours', J. Controlled release, 51, 13 (1997)
11 M. Syamal, D. Sirshendu, and P. K. Bhattacharya, 'Phenol solubilization by cetyl pyridinium chloride micelles in micellar enhanced ultrafiltration', J. Memb. Sci., 130, 99 (1997)   DOI
12 H. Uchiyama, S. D. Christian, E. E. Tucker, and J. F. Scamehorn, 'Solubilization and separation of p-tert-butylphenol using polyelectrolyte/surfactant complexes in colloid-enhanced ultrafiltration', J. Colloid Interface Sci., 163, 493 (1994)   DOI   ScienceOn
13 F. Frenquellucci, 'Hazardous waste reduction in the metal-finishing industry, Membrane technology: application to industrial wastewater treatment', Kluwer Academic Publishers, Dordrecht, 123 (1995)
14 S. S. Kulkarni, E. W. Funk, and N. N. Li, 'Ultrafiltration', Membrane Handbook, Winston Ho and K. K. Sirkar, (Eds.), Chapman & Hall, New York, 391 (1992)