Browse > Article

Surface Hydrolysis of Fibrous Poly(${\epsilon}$-caprolactone) Scaffolds for Enhanced Osteoblast Adhesion and Proliferation  

Park, Jeong-Soo (Department of Orthopaedic Surgery, Kangnam St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
Kim, Jung-Man (Department of Orthopaedic Surgery, Kangnam St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
Lee, Sung-Jun (Department of Nano Technology, Advanced Nano Materials Research Team, Daegu Gyeongbuk Institute of Science & Technology)
Lee, Se-Geun (Department of Nano Technology, Advanced Nano Materials Research Team, Daegu Gyeongbuk Institute of Science & Technology)
Jeong, Young-Keun (Hybrid Materials Solution National Core Research Center (NCRC), Pusan National University)
Kim, Sung-Eun (Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology)
Lee, Sang-Cheon (Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Macromolecular Research / v.15, no.5, 2007 , pp. 424-429 More about this Journal
Abstract
A procedure for the surface hydrolysis of an electrospun poly(${\epsilon}$-caprolactone) (PCL) fibrous scaffold was developed to enhance the adhesion and proliferation of osteoblasts. The surface hydrolysis of fibrous scaffolds was performed using NaOH treatment for the formation of carboxyl groups on the fiber surfaces. The hydrolysis process did not induce deformation of the fibers, and the fibers retained their diameter. The cell seeding density on the NaOH-treated PCL fibrous scaffolds was more pronounced than on the non-treated PCL fibers used as a control. The alkaline phosphatase activity, osteocalcin and a mineralization assay strongly supported that the surface-hydrolyzed PCL fibrous scaffolds provided more favorable environments for the proliferation and functions of osteoblasts compared to the non-treated PCL fibrous scaffolds use as a control.
Keywords
electro spinning; poly(${\epsilon}$-caprolactone); surface hydrolysis; osteoblast; tissue engineering;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 11  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 E. Luong-Van, L. Grondahl, K. N. Chua, K. W. Leong, V. Nurcombe, and S. M. Cool, Biomaterials, 27, 2042 (2006)
2 M. C. Serrano, M. T. Portoles, M. Vallet-Regi, I. Izquierdo, L. Galletti, J. V. Comas, and R. Pagani, Macromol. Biosci., 5, 415 (2005)
3 K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee, Polymer, 44, 1287 (2003)
4 S. S. Kim, M. S. Park, O. Jeon, C. Y. Choi, and B. S. Kim, Biomaterials, 27, 1399 (2006)
5 G. Verreck, I. Chun, J. Rosenblatt, J. Peeters, A. V. Dijck, J. Mensch, M. Noppe, and M. E. Brewster, J. Control. Release, 92, 349 (2003)
6 G. Ciapetti, L. Ambrosio, L. Savarino, D. Granchi, E. Cenni, N. Baldini, S. Pagani, S. Guizzardi, F. Causa, and A. Giunti, Biomaterials, 24, 3815 (2003)   DOI   ScienceOn
7 Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, J. Control. Release, 89, 341 (2003)
8 J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, and X. Jing, J. Control. Release, 92, 227 (2003)
9 H. M. Kowalczynska and J. Kaminski, J. Cell Sci., 99, 587 (1991)
10 D. S. Katti, K. W. Robinson, F. K. Ko, and C. T. Laurencin, J. Biomed. Mater. Res., 70B, 286 (2004)
11 A. Curtis and J. Forrester, J. Cell Sci., 71, 17 (1984)
12 W. J. Li, J. A. Cooper, Jr., R. L. Mauck, and R. S. Tuan, Acta. Biomater., 2, 377 (2006)
13 W. Cui, X. Li, X. Zhu, G. Yu, S. Zhou, and J. Weng, Biomacromolecules, 7, 1623 (2006)   DOI   ScienceOn
14 H. Yoshimoto, Y. M. Shina, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003)   DOI   ScienceOn
15 S. E. Kim, H. K. Rha, S. Surendran, C. W. Han, S. C. Lee, H. W. Choi, Y.-W. Choi, K.-H. Lee, J. W. Rhie, and S. T. Ahn, Macromol. Res., 14, 565 (2006)   과학기술학회마을   DOI
16 G. E. Parka, M. A. Pattisona, K. Park, and T. J. Webster, Biomaterials, 26, 3075 (2005)
17 K. Y. Lee, E. Alsberg, S. Hsiong, W. Comisar, J. Linderman, R. Ziff, and D. Mooney, Nano. Lett., 4, 1501 (2004)
18 K. Kim, Y. K. Luu, C. Chang, D. F. Fang, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, J. Control. Release, 98, 47 (2004)
19 E. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek, J. Control. Release, 81, 57 (2002)
20 Y. Zhu, M. F. Leong, W. F. Ong, M. B. Chan-Park, and K. S. Chian, Biomaterials, 28, 861 (2007)
21 H. Park, K. Y. Lee, S. J. Lee, K. E. Park, and W. H. Park, Macromol. Res., 15, 238 (2007)   과학기술학회마을   DOI
22 J. Chen, B. Chu, and B. S. Hsiao, J. Biomed. Mater. Res. Part A, 79A, 307 (2006)   DOI   ScienceOn
23 C. L. Casper, N. Yamaguchi, K. L. Kiick, and J. F. Rabolt, Biomacromolecules, 6, 1998 (2005)
24 Y. Zhu, C. Gao, and J. Shen, Biomaterials, 23, 4889 (2002)
25 Z. Cheng and S. H. Teoh, Biomaterials, 25, 1991 (2004)
26 J. Gao, L. Niklason, and R. Langer, J. Biomed. Mater. Res., 42, 417 (1998)