• Title/Summary/Keyword: poly($\varepsilon$-caprolactone) (PCL)

Search Result 83, Processing Time 0.02 seconds

Preparation of Exfoliated PCL/Clay Nanocomposite and Its Characterization (박리형 PCL/Clay 나노복합재료 제조와 특성)

  • 유성구;박대연;배광수;서길수
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.421-426
    • /
    • 2001
  • 11-Aminododecanoic acid, to insert the functional group of -COOH reacted with the end group of poly($\varepsilon$-caprolactone) diol, and cetyltrimethylammonium bromide (CTMA), to increase the d-spacing of Montmorillonite (MMT), were intercalated into $Na^+;_-$MMT. The modified MMT was reacted with poly(${varepsilon}-caprolactone$) diol ($M_n{=2000$) in THF solution at $80^{\circ}C$ for 4 hrs. After reaction, poly(${varepsilon}-caprolactone$) ($M_n{=80000$) was mixed into the solution for 12 hrs. To prepare the PCL/clay nanocomposite film this solution was cast into the silicon mold at $60^{\circ}C$ in vacuum oven for 6 hrs. From the results of XRD and TEM, it was found that the exfoliated PCL/clay nanocomposite were prepared. The effects of the amount of MMT on the mechanical properties and thermal properties of PCL/clay nanocomposites have been investigated by tensile tester and DSC. Because the MMT was dispersed homogeneously in PCL matrix, the Young's modulus of the nanocomposite were found to be excellent. However, MMT dispersed in PCL matrix had almost no effect on the tensile strength of the composites. The crystallization temperature of PCL increased in proportion to 3 wt% MMT in the PCL matrix.

  • PDF

Synthesis and Microphase Separation of Biodegradable Poly($\varepsilon$-caprolactone)-Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Multiblock Copolymer Films

  • You, Jae-Ho;Choi, Sung-Wook;Kim, Jung-Hyun;Kwak, Young-Tae
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.609-613
    • /
    • 2008
  • Poly($\varepsilon$-caprolactone)-poly(ethylene glycol)-poly($\varepsilon$-caprolactone) (PCL-PEG-PCL) multiblock copolymers at various hydrophobic-hydrophilic ratios were successfully synthesized by the chain extension of triblock copolymers through isocyanate (hexamethylene diisocyanate). Biodegradable films were prepared from the resulting multiblock copolymers using the casting method. The mechanical properties of the films were improved by chain extension of the triblock copolymers, whereas the films prepared by the triblock copolymers were weak and brittle. Atomic force microscopy (AFM) of the multiblock copolymer film showed that the hydrophilic PEG had segregated on the film surface. This is consistent with the observed contact angle of the films.

Study on the Randomness of Poly(ethylene naphthalate)/poly($\varepsilon$-caprolactone) Copolymer by Melt Blending (Poly(ethylene naphthalate)/Poly($\varepsilon$-caprolactone) 용융 블렌딩에 의하여 발현된 공중합체의 Randomness에 관한 연구)

  • 강호종;한규일;김환기
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.664-672
    • /
    • 2000
  • It is generally agreed that transesterification provides the, copolymer in the melt blending of poly(ethylene naphthalate) (PEN) and poly($\varepsilon$-caprolactone) (PCL). Effects of the conditions of transesterification reaction and catalyst on the degree of randomness and average sequence length of PEN/PCL blends were investigated and results were used to interpret the biodegradability of PEN/PCL blends. It was found that degree of randomness values of obtained copolymer lied between 0 and 1, and it indicated that this blend consisted with physical blends of PEN/PCL and PEN/PCL block copolymers. The degree of randomness reached almost 1 which is the theoretical value of random copolymers and the average sequence length became shorter by the further transesterification reaction. In additions, it was found that the increase of copolymers, especially random copolymers reduced the biodegradability in PEN/PCL blends.

  • PDF

Thermal and Physical Properties of Poly(butylene succinate)/Poly(${\varepsilon}$-caprolactone) Copolyesters Prepared by Transesterification (에스테르 교환반응으로 제조된 Poly(butylene succinate)/Poly(${\varepsilon}$-caprolactone) Copolyesters의 물리적 및 열적 성질에 관한 연구)

  • Yoo, Young-Tai;Yang, Su-Bong;Im, Seung-Soon
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.486-495
    • /
    • 2001
  • Degradable poly(butylene succinate) (PBS)/poly(TEX>${\varepsilon}$-caprolactone) (PCL) copolyesters were prepared by using transesterification between poly(butylene succinate) and poly(TEX>${\varepsilon}$-caprolactone). The thermal and mechanical properties of copolyesters were investigated using differential scanning calorimetry and tensile testing. Interchange reaction between PBS and PCL molecules could be identified from proton NMR spectra. The reduced viscosity of the PBS/PCL copolyesters increased with reaction time except for a series of PBS/PCL (50/50 wt%) copolyesters. For all the compositions, the melting point and crystallization temperature of high-$T_m$ component (PBS) decreased as reaction time increased. From the results of tensile testing, it was found that stress and strain at break of the PBS/PCL copolymers containing less than 40 wt% PCL improved as compared to those of pure PBS, but at 50 wt% PCL stress at break of PBS/PCL copolymers was lowered due to decrease of crystallinity. On the other hand, Young's moduli of all the copolyesters decreased with both reaction time and PCL content.

  • PDF

Preparation and Characterization of Nanoparticles Using Poly(N-isopropylacrylamide)-$Poly({\varepsilon}-caprolactone)$ and Poly(ethylene glycol)-$Poly({\varepsilon}-caprolactone)$ Block Copolymers with Thermosensitive Function

  • Choi, Chang-Yong;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.623-632
    • /
    • 2007
  • Thermosensitive nanoparticles were prepared via the self-assembly of two different $poly({\varepsilon}-caprolactone)$-based block copolymers of poly(N-isopropylacrylamide)-b-$poly({\varepsilon}-caprolactone)$ (PNPCL) and poly(ethylene glycol)-b-$poly({\varepsilon}-caprolactone)$ (PEGCL). The self-aggregation and thermosensitive behaviors of the mixed nanoparticles were investigated using $^1H-NMR$, turbidimetry, differential scanning microcalorimetry (micro-DSC), dynamic light scattering (DLS), and fluorescence spectroscopy. The copolymer mixtures (mixed nanoparticles, M1-M5, with different PNPCL content) formed nano-sized self-aggregates in an aqueous environment via the intra- and/or intermolecular association of hydrophobic PCL chains. The microscopic investigation of the mixed nanoparticles showed that the critical aggregation concentration (cac), the partition equilibrium constants $(K_v)$ of pyrene, and the aggregation number of PCL chains per one hydrophobic microdomain varied in accordance with the compositions of the mixed nanoparticles. Furthermore, the PNPCL harboring mixed nanoparticles evidenced phase transition behavior, originated by coil to the globule transition of PNiPAAm block upon heating, thereby resulting in the turbidity change, endothermic heat exchange, and particle size reduction upon heating. The drug release tests showed that the formation of the thermosensitive hydrogel layer enhanced the sustained drug release patterns by functioning as an additional diffusion barrier.

Norfloxacin-Incorporated Polymeric Micelle Composed of Poly(ε-caprolactone)/Poly(ethylene glycol) Diblock Copolymer (Norfloxacin이 담지된 Poly(ε-caprolactone)/Poly(ethylene glycol) 이중블록공중합체 미셀의 제조)

  • Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.137-143
    • /
    • 2009
  • We prepared norfloxacin (NFX)-incorporated polymeric micelle using poly ($\varepsilon$-caprolactone)/poly(ethylene glycol) (PCL/PEG, CE) diblock copolymers. Particle size was from 60 to 200 nm according to the PCL block length. Their critical association concentration (CAC) was decreased according to the increase of PCL block length. $^1H$-NMR study showed core-shell type micelle structures of CE diblock copolymers in the aqueous environment. Drug release from polymeric micelle was continued over 2 days. Duration of drug release was varied according to the PCL block length and drug contents. At antimicrobial activity test, polymeric micelle showed almost similar cytotoxicity compared to NFX itself.

Morphology and Charge Transport Properties of Chemically Synthesized Polyaniline-poly(ε-caprolactone) Polymer Films

  • Basavaraja, C.;Kim, Dae-Gun;Kim, Won-Jeong;Kim, Ji-Hyun;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.927-933
    • /
    • 2011
  • Conducting polyaniline-poly($\varepsilon$-caprolactone) polymer composites were synthesized via in situ deposition techniques. By dissolving different weight percentages of poly($\varepsilon$-caprolactone) (PCL) (10%, 20%, 30%, 40%, and 50%), the oxidative polymerization of aniline was achieved using ammonium persulfate as an oxidant. FTIR, UV-vis spectra, and X-ray diffraction studies support a strong interaction between polyaniline (PANI) and PCL. Structural morphology of the PANI-PCL polymer composites was studied using scanned electron microscopy (SEM) and transmittance electron microscopy (TEM), and thermal stability was analyzed by thermogravimetric analysis (TGA) technique. The temperature-dependent DC conductivity of PANI-PCL polymer composite films was studied in the range of 305-475 K, which revealed a semiconducting behavior in the transport properties of the polymer films. Conductivity increased with the increase of PCL in below critical level, however conductivity of the polymer film was decreased with increase of PCL concentration higher than the critical value.

Formation of Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Nanoparticles via Nanoprecipitation

  • Lee, Jae-Sung;Hwang, Su-Jong;Lee, Doo-Sung;Kim, Sung-Chul;Kim, Duk-Joon
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.72-78
    • /
    • 2009
  • Size control of therapeutic carriers in drug delivery systems has become important due to its relevance to biodistribution in the human body and therapeutic efficacy. To understand the dependence of particle size on the formation condition during nanoprecipitation method, we prepared nanoparticles from biodegradable, amphiphilic block copolymers and investigated the particle size and structure of the resultant nanoparticles according to various process parameters. We synthesized monomethoxy poly(ethylene glycol)-poly($\varepsilon$-caprolactone) block copolymer, MPEG-PCL, with different MPEG/PCL ratios via ring opening polymerization initiated from the hydroxyl end group of MPEG. Using various formulations with systematic change of the block ratio of MPEG and PCL, solvent choice, and concentration of organic phase, MPEG-PCL nanoparticles were prepared through nanoprecipitation technique. The results indicated that (i) the nanoparticles have a dual structure with an MPEG shell and a PCL core, originating from self-assembly of MPEG-PCL copolymer in aqueous condition, and (ii) the size of nanoparticles is dependent upon two sequential processes: diffusion between the organic and aqueous phases and solidification of the polymer.

Fabricating Highly Aligned Electrospun Poly(${\varepsilon}$-caprolactone) Micro/Nanofibers for Nerve Tissue Regeneration (신경세포 재생을 위한 고배열성 Poly(${\varepsilon}$-caprolactone) 마이크로/나노섬유 제조 공정에 관한 연구)

  • Yoon, Hyeon;Lee, Haeng-Nam;Park, Gil-Moon;Kim, Geun-Hyung
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.185-190
    • /
    • 2010
  • Recently, an electrospinning process, which is one of various nanotechnologies, has been used in fabricating micro/nanosized fibers. The fabricated electrospun micro/nanofibers has been widely applied in biomedical applications, specially in tissue regeneration. In this study, we fabricated highly aligned electrospun biodegradable and biocompatible poly(${\varepsilon}$-caprolactone)(PCL) micro/nanofibers by using a modified electrospinning process supplemented with a complex electric field. From this process, we can attain highly aligned electrospun nanofibers compared to that fabricated with the normal electrospinning process. To observe the feasibility of the highly aligned electrospun mat as a biomedical scaffold, nerve cells(PC-12) was cultured and it was found that the cells those were well oriented to the direction of aligned fibers.

Metal Nanoparticles in the Template of Poly(2-ethyl-2-oxazoline)-block-Poly(${\varepsilon}$-caprolactone) Micelle

  • Park, Chi-Young;Rhue, Mi-Kyo;Lim, Jin-O;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • The amphiphilic block copolymer (PEtOz-PCL) of poly(2-ethyl-2-oxazoline) (PEtOz) and poly(${\varepsilon}$-caprolactone) (PCL) formed spherical micellar structures with an average diameter of 26 nm in aqueous phase. Au and Pd nanoparticles with an average diameter of $2{\sim}3nm$ were prepared by using the PEtOz-PCL micelle consisting of a PEtOz shell and PCL core. The Au nanoparticles of PEtOz-PCL micelles in aqueous phase could be transferred into organic phase by using n-dodecanethiol. The use of the Pd-NP/PEtOz-PCL micelle as a nanoreactor for Suzuki cross-coupling reaction was investigated.