• Title/Summary/Keyword: polar motion

Search Result 92, Processing Time 0.023 seconds

ANALYSIS OF THE EFFECT OF UTI-UTC TO HIGH PRECISION ORBIT PROPAGATION

  • Shin, Dong-Seok;Kwak, Sung-Hee;Kim, Tag-Gon
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.159-166
    • /
    • 1999
  • As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit) satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.

  • PDF

Basic Control Algorithm for Parallel Formation of Multi-mining Robots (다중 집광로봇의 수평대형유지를 위한 기초 알고리즘 연구)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Hong, Sup;Kim, Sang-Bong
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.465-473
    • /
    • 2014
  • This paper proposes a formation control method by which multi-mining robots maintain a specified formation and follow a path. To secure the path tracking performance, a pure-pursuit algorithm is considered for each individual robot, and to minimize the deviation from the reference path, speed reduction in the steering motion is added. For the formation, in which two robots are parallel in a lateral direction, the robots track the specified path at a constant distance. In this way, the Leader-Follower method is adopted and the following robot knows the position and heading angle of the leader robot. Through the experimental test using two ground vehicle models, the performance is verified.

Nonlinear Dynamic Analysis of a Satellite with Tether Conveying Fluid (유체가 이송하는 테더가 있는 인공위성의 동특성 분석)

  • Jung, Won-Young;Lee, Kyu-Ho;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.691-697
    • /
    • 2011
  • The purpose of this study is to analyze nonlinear dynamics of a tethered satellite. The coupled non-linear equations of motion are derived by using the extended Hamilton's principle with the polar coordinate system. In order to analyze the response of tethered satellite, time responses are computed by the Newmark's time integration method. We also investigate the dynamic behavior of the system and the effects of length of tether, tip mass and conveyed fluid through the tether with time variation.

Free Vibrations of Arches in Rectangular Coordinates (직교좌표계에 의한 아치의 자유진동 해석)

  • Lee, Tae-Eun;Ahn, Bae-Soon;Kim, Young-Il;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.394.2-394
    • /
    • 2002
  • The differential equations governing free vibrations of the elastic arches with unsymmetric axis are derived in the rectangular coordinates rather than in polar coordinates, in which the effect of rotatory inertia is included. Frequencies and mode shapes are computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are made to validate theories and numerical methods developed herein. (omitted)

  • PDF

Dynamic Analysis of a Pendulum Automatic Dynamic Balancer (펜들럼 자동 평형 장치의 동특성 해석)

  • Lee, Jin-Woo;Sohn, Jin-Seung;Joseph Cho;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.396.2-396
    • /
    • 2002
  • Dynamic stability and behavior are analyzed fur Pendulum Automatic Dynamic Balancer which is a device to reduce an unbalanced mass of rotors. The nonlinear equations of motion for a system including a Pendulum Balancer are derived with respect to polar coordinate by Lagrange's equations. The perturbation method is applied to find the equilibrium positions and to obtain the linear variation equations. Based on linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue problem. (omitted)

  • PDF

A Thin Circular Beam Finite Element for Out-of-plane Vibration Analysis of Curved Beams (곡선 보의 면외 진동해석을 위한 얇은 원형 보 유한요소)

  • Kim, Chang-Boo;Kim, Bo-Yeon;Song, Seung-Gwan
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1598-1606
    • /
    • 2007
  • In this paper, we present a thin circular beam finite element for the out-of-plane vibration analysis of curved beams. The element stiffness matrix and the element mass matrix are derived respectively from the strain energy and the kinetic energy by using the natural shape functions which are obtained from an integration of the differential equations of the finite element in static equilibrium. The matrices are formulated with respect to the local polar coordinate system or to the global Cartesian coordinate system in consideration of the effects of shear deformation and rotary inertias. Some example problems are analysed. The FEM results are compared with the theoretical ones to show that the presented finite element can describe quite efficiently and accurately the out-of-plane motion of thin curved beams.

  • PDF

Nonlinear Dynamic Analysis of a Tethered Satellite (테더가 있는 인공위성의 비선형 동역학 해석)

  • Lee, Kyu-Ho;Jung, Won-Young;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.416-421
    • /
    • 2011
  • The purpose of this study is to analyze nonlinear dynamics of a tethered satellite. The nonlinear equations of motion are derived by using Lagrange's equations with the polar coordinate system. In order to analyze the response of tethered satellite, time responses are computed by the Newmark's time integration method. This paper claims that the dynamic behavior of the system is changed by the effect of length of tether, mass ratio of satellites.

KAIST ARM의 고속동작제어를 위한 하드웨어 좌표변환기의 개발

  • 박서욱;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.127-132
    • /
    • 1992
  • To relize the future intelligent robot the development of a special-purpose processor for a coordinate transformation is evidently challenging task. In this case the complexity of a hardware architecture strongly depends on the adopted algorithm. In this paper we have used an inverse kinemetics algorithm based on incremental unit computation method. This method considers the 3-axis articulated robot as the combination of two types of a 2-axis robot: polar robot and 2-axis planar articulated one. For each robot incremental units in the joint and Cartesian spaces are defined. With this approach the calculation of the inverse Jacobian matrix can be realized through a simple combinational logic gate. Futhermore, the incremental computation of the DDA integrator can be used to solve the direct kinematics. We have also designed a hardware architecture to implement the proposed algorithm. The architecture consists of serveral simple unitsl. The operative unit comprises several basic operators and simple data path with a small bit-length. The hardware architecture is realized byusing the EPLD. For the straight-line motion of the KAIST arm we have obtained maximum end effector's speed of 12.6 m/sec by adopting system clock of 8 MHz.

Dynamic Analysis of an Automatic Dynamic Balancer in a Rotor with the Bending Flexibility (축의 굽힘효과를 고려한 회전체에 장착된 자동평형장치의 동적해석)

  • Jeong, Jin-Tae;Bang, In-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1125-1130
    • /
    • 2001
  • Dynamic behaviors of an automatic dynamic balancer are analyzed by a theoretical approach. Using the polar coordinates, the non-linear equations of motion for an automatic dynamic balancer equipped in a rotor with the bending flexibility are derived from Lagrange equation. Based on the non-linear equation, the stability analysis is performed by using the perturbation method. The stability results are verified by computing dynamic response. The time responses are computed from the non-linear equations by using a time integration method. We also investigate the effect of the bending flexibility on the dynamics of the automatic dynamic balancer.

A Study on Biomechanical Noise Reduction Technique Using Length Information (길이 정보를 이용한 생체 잡음 제거 기술에 관한 연구)

  • Gang, Sin-Gil;Yun, Yong-San;Park, Jae-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1643-1649
    • /
    • 2000
  • When markers attached to body segment are captured by camera, they generally have many noises due to intrinsic biomechanical characteristics. In this study, one technique to reduce these noises is suggested, which constructs a local coordinates of the markers using time-mean lengths of the measured markers and calculates a linear transformation matrix of the interesting body using least square error technique. This matrix is decomposed into two matrices of rotation and flexibility. Suggested method does well for 3 markers or more, and shows consistent results without regard to choice of reference axis.