• Title/Summary/Keyword: polar motion

Search Result 92, Processing Time 0.026 seconds

Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

  • Kim, Young-Rok;Park, Eunseo;Oh, Hyungjik Jay;Park, Sang-Young;Lim, Hyung-Chul;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.269-277
    • /
    • 2013
  • In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR) observations for the International Laser Ranging Service (ILRS) associate analysis center (AAC). Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD) and finding solutions of a terrestrial reference frame (TRF) and Earth orientation parameters (EOPs). For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS) value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS) 08 C04 results, shows that standard deviations of polar motion $X_P$ and $Y_P$ are 0.754 milliarcseconds (mas) and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

Orbital maneuvers by using feedback linearization method

  • Lee, Sanguk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.480-485
    • /
    • 1993
  • A method for obtaining optimal orbital maneuvers of a space vehicle has been developed by combining feedback linearization method with the elegance of the Lambert's theorem. To obtain solutions to nonlinear orbital maneuver problems. The full nonlinear equations of motion for space vehicle in polar coordinate system are transformed exactly into a controllable linear set in Brunovsky canonical form by using feedback linearization by choosing position vector as fully observable output vector. These equations are used to pose a linear optimal tracking problem with a solutions to Lambert's problem and a linear analytical solution of continuous low thrust problem as reference trajectories.

  • PDF

Dynamic Analysis of a Pendulum Automatic Dynamic Balancer (펜들럼 자동 평형 장치의 동특성 해석)

  • Lee, Jin-Woo;Sohn, Jin-Seung;Cho, Eun-Hyoung;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.994-999
    • /
    • 2002
  • The Pendulum Automatic Dynamic Balancer is a device to reduce the unbalanced mass of rotors. For the analysis of dynamic stability and behavior, the nonlinear equations of motion for a system including the Pendulum Balancer are derived with respect to polar coordinate by Lagrange's equations. And the perturbation method is applied to find the equilibrium positions and to obtain the linear variation equations. Based on the linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue problem. Furthermore, in order to confirm the stability, the time responses for the system are computed from the nonlinear equations of motion.

  • PDF

Measurement of grasping reach by three-dimensional motion capture (3차원 동작측정 방법에 의한 인체 파악한계 측정)

  • 박재희;고봉기;김진호
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.85-89
    • /
    • 1997
  • We used a three-dimensional motion capture method to measure the grasping reach of Korean. This method was applied well to the grasping reach measurement with low measurement error and high efficiency. We measured the grasping reach of 29 males and 21 females at the different height from seat reference level; -10, 0, 30, 60, and 90cm. The grasping reach data were summarized at each 15 .deg. in polar corrdinates to compare with the former researches. If the number of subjects increases in the supplement research, the grasping reach data will be used in the ergonomic design of the driver's cabin or workstations in industry.

  • PDF

Vibration Analysis of an Automatic Ball Balancer with Double Races (이중레이스를 갖는 자동평형장치의 진동해석)

  • Lee, Dong-Jin;Jeong, Jin-Tae;Hwang, Cheol-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1093-1102
    • /
    • 2000
  • Dynamic behaviors are analyzed for an automatic ball balancer with double races which is a device to reduce eccentricity of rotors. Equations of motion are derived by using the polar coordinate sys tem instead of the rectangular coordinate system which is used in other previous researches. To analyze the stability around equilibrium positions, the perturbation method is used. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

Chandler Wobble and Free Core Nutation: Theory and Features

  • Na, Sung-Ho;Roh, Kyoung-Min;Cho, Jungho;Yoo, Sung-Moon;Choi, Byungkyu;Yoon, Hasu
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • Being a torque free motion of the rotating Earth, Chandler wobble is the major component in the Earth's polar motion with amplitude about 0.05-0.2 arcsec and period about 430-435 days. Free core nutation, also called nearly diurnal free wobble, exists due to the elliptical core-mantle boundary in the Earth and takes almost the whole part of un-modelled variation of the Earth's pole in the celestial sphere beside precession and nutation. We hereby present a brief summary of their theories and report their recent features acquired from updated datasets (EOP C04 and ECMWF) by using Fourier transform, modelling, and wavelet analysis. Our new findings include (1) period-instability of free core nutation between 420 and 450 days as well as its large amplitude-variation, (2) re-determined Chandler period and its quality factor, (3) fast decrease in Chandler amplitude after 2010.

A Finite Thin Circular Beam Element for In-Plane Vibration Analysis of Curved Beams

  • Kim Chang-Boo;Park Jung-Woo;Kim Sehee;Cho Chongdu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2187-2196
    • /
    • 2005
  • In this paper, the stiffness and the mass matrices for the in-plane motion of a thin circular beam element are derived respectively from the strain energy and the kinetic energy by using the natural shape functions of the exact in-plane displacements which are obtained from an integration of the differential equations of a thin circular beam element in static equilibrium. The matrices are formulated in the local polar coordinate system and in the global Cartesian coordinate system with the effects of shear deformation and rotary inertia. Some numerical examples are performed to verify the element formulation and its analysis capability. The comparison of the FEM results with the theoretical ones shows that the element can describe quite efficiently and accurately the in-plane motion of thin circular beams. The stiffness and the mass matrices with respect to the coefficient vector of shape functions are presented in appendix to be utilized directly in applications without any numerical integration for their formulation.

Study on sloshing simulation in the independent tank for an ice-breaking LNG carrier

  • Ding, Shifeng;Wang, Gang;Luo, Qiuming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.667-679
    • /
    • 2020
  • As the LNG carrier operates in ice covered waters, it is key to ensure the overall safety, which is related to the coupling effect of ice-breaking process and internal liquid sloshing. This paper focuses on the sloshing simulation of the ice-breaking LNG carrier, and the numerical method is proposed using Circumferential Crack Method (CCM) and Volume of Vluid (VOF) with two main key factors (velocity νx and force Fx). The ship motion analysis is carried out by CCM when the ship navigates in the ice-covered waters with a constant propulsion power. The velocity νx is gained, which is the initial excitation condition for the calculation of internal sloshing force Fx. Then, the ship motion is modified based on iterative computations under the union action of ice-breaking force and liquid sloshing load. The sloshing simulation under the LNG tank is studied with the modified ship motion. Moreover, an ice-breaking LNG ship with three-leaf type tank is used for case study. The internal LNG sloshing is simulated with three different liquid heights, including free surface shape and sloshing pressure distribution at a given moment, pressure curves at monitoring points on the bulkhead. This present method is effective to solve the sloshing simulation during ice-breaking process, which could be a good reference for the design of the polar ice-breaking LNG carrier.

Numerical Analysis of Laminar Flows in the Two Dimensional Sector Cavity by Finite Analytic Method in Polar Coordinate System (極座標系 有限解析法 에 의한 2次元 부채꼴 캐비티 의 層流流動 解析)

  • 배주찬;강신영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.185-194
    • /
    • 1984
  • The finite analytic method is extended to solve the steady two dimensional Navier-Stokes equation of stream functions and vorticity in polar coordinate system. The method is applied to calculate laminar flows in a sector cavity where the motion is induced by the rotation of the outer wall. Numerical solutions are obtained in the range of Reynolds number 0 to 5000 and aspect ratios 0.50, 1.20, 1.60 and 1.92. The finite analytic method is verfied to be accurate and fast convergent at high Reynolds numbers. It is promising as a numerical method of viscous flows and heat transfer. Flows in sector cavities show different flow structures and formation of secondary vortex with aspect ratios and Reynolds numbers in comparison with rectangular cavities.

Grounding Line Change of Ronne Ice Shelf, West Antarctica, from 1996 to 2015 Observed by using DDInSAR

  • Han, Soojeong;Han, Hyangsun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Grounding line of a glacier or ice shelf where ice bottom meets the ocean is sensitive to changes in the polar environment. Recent rapid changes of grounding lines have been observed especially in southwestern Antarctica due to global warming. In this study, ERS-1/2 and Sentinel-1A Synthetic Aperture Radar (SAR) image were interferometrically acquired in 1996 and 2015, respectively, to monitor the movement of the grounding line in the western part of Ronne Ice Shelf near the Antarctic peninsula. Double-Differential Interferometric SAR (DDInSAR) technique was applied to remove gravitational flow signal to detect grounding line from the interferometric phase due to the vertical displacement of the tide. The result showed that ERS-1/2 grounding lines are almost consistent with those from Rignot et al. (2011) which used the similar dataset, confirming the credibility of the data processing. The comparison of ERS-1/2 and Sentinle-1A DDInSAR images showed a grounding line retreat of $1.0{\pm}0.1km$ from 1996 to 2015. It is also proved that the grounding lines based on the 2004 MODIS Mosaic of Antarctica (MOA) images and digital elevation model searching for ice plain near coastal area (Scambos et al., 2017), is not accurate enough especially where there is a ice plain with no tidal motion.