• Title/Summary/Keyword: polar ionosphere

Search Result 36, Processing Time 0.023 seconds

Observations for the Ionosphere Using European Incoherent Scatter (EISCAT) in the Dayside Polar Cap/Cusp and Auroral Region

  • Geonhwa Jee;Eun-Young Ji;Eunsol Kim;Young-Sil Kwak;Changsup Lee;Hyuck-Jin Kwon;Ji-Eun Kim;Young-Bae Ham;Ji-Hee Lee;Jeong-Han Kim;Tae-Yong Yang;Hosik Kam
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Korea Polar Research Institute (KOPRI) and Korea Astronomy and Space Institute (KASI) have been participating in the European Incoherent Scatter (EISCAT) Scientific Association as an affiliate institution in order to observe the polar ionosphere since 2015. During the period of December 16-21, 2016 and January 3-9, 2018, the observations for the polar ionospheric parameters such as the electron density profiles, ion drift, and electron/ion temperature are carried out in the polar cap/cusp region by the EISCAT Svalbard radar (ESR). The purpose of the observations is to investigate the characteristic of the winter ionosphere in the dayside polar cap/cusp region. In this paper, we briefly report the results of the ESR observations for winter daytime ionosphere and also the simultaneous observations for the ionosphere-thermosphere system together with the balloon-borne instrument High-Altitude Interferometer WIND Experiment (HIWIND) performed by the High Altitude Observatory (HAO), National Center for Atmospheric Research (NCAR). We further introduce our research activities using long-term EISCAT observations for the occurrence of ion upflow and the climatology of the polar ionospheric density profiles in comparison with the mid-latitude ionosphere. Finally, our future research plans will briefly be introduced.

Observations of the Polar Ionosphere by the Vertical Incidence Pulsed Ionospheric Radar at Jang Bogo Station, Antarctica

  • Ham, Young-Bae;Jee, Geonhwa;Lee, Changsup;Kwon, Hyuk-Jin;Kim, Jeong-Han;Zabotin, Nikolay;Bullett, Terence
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.143-156
    • /
    • 2020
  • Korea Polar Research Institute (KOPRI) installed an ionospheric sounding radar system called Vertical Incidence Pulsed Ionospheric Radar (VIPIR) at Jang Bogo Station (JBS) in 2015 in order to routinely monitor the state of the ionosphere in the auroral oval and polar cap regions. Since 2017, after two-year test operation, it has been continuously operated to produce various ionospheric parameters. In this article, we will introduce the characteristics of the JBS-VIPIR observations and possible applications of the data for the study on the polar ionosphere. The JBS-VIPIR utilizes a log periodic transmit antenna that transmits 0.5-25 MHz radio waves, and a receiving array of 8 dipole antennas. It is operated in the Dynasonde B-mode pulse scheme and utilizes the 3-D inversion program, called NeXtYZ, for the data acquisition and processing, instead of the conventional 1-D inversion procedure as used in the most of digisonde observations. The JBS-VIPIR outputs include the height profiles of the electron density, ionospheric tilts, and ion drifts with a 2-minute temporal resolution in the bottomside ionosphere. With these observations, possible research applications will be briefly described in combination with other observations for the aurora, the neutral atmosphere and the magnetosphere simultaneously conducted at JBS.

SPACE WEATHER RESEARCH BASED ON GROUND GEOMAGNETIC DISTURBANCE DATA (지상지자기변화기록을 이용한 우주천기연구)

  • AHN BYUNG-HO
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.1-13
    • /
    • 2000
  • Through the coupling between the near-earth space environment and the polar ionosphere via geomagnetic field lines, the variations occurred in the magnetosphere are transferred to the polar region. According to recent studies, however, the polar ionosphere reacts not only passively to such variations, but also plays active roles in modifying the near-earth space environment. So the study of the polar ionosphere in terms of geomagnetic disturbance becomes one of the major elements in space weather research. Although it is an indirect method, ground magnetic disturbance data can be used in estimating the ionospheric current distribution. By employing a realistic ionospheric conductivity model, it is further possible to obtain the distributions of electric potential, field-aligned current, Joule heating rate and energy injection rate associated with precipitating auroral particles and their energy spectra in a global scale with a high time resolution. Considering that the ground magnetic disturbances are recorded simultaneously over the entire polar region wherever magnetic station is located, we are able to separate temporal disturbances from spatial ones. On the other hand, satellite measurements are indispensible in the space weather research, since they provide us with in situ measurements. Unfortunately it is not easy to separate temporal variations from spatial ones specifically measured by a single satellite. To demonstrate the usefulness of ground magnetic disturbance data in space weather research, various ionospheric quantities are calculated through the KRM method, one of the magneto gram inversion methods. In particular, we attempt to show how these quantities depend on the ionospheric conductivity model employed.

  • PDF

Fundamentals of Numerical Modeling of the Mid-latitude Ionosphere

  • Geonhwa Jee
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • The ionosphere is one of the key components of the near-Earth's space environment and has a practical consequence to the human society as a nearest region of the space environment to the Earth. Therefore, it becomes essential to specify and forecast the state of the ionosphere using both the observations and numerical models. In particular, numerical modeling of the ionosphere is a prerequisite not only for better understanding of the physical processes occurring within the ionosphere but also for the specification and forecast of the space weather. There are several approaches for modeling the ionosphere, including data-based empirical modeling, physics-based theoretical modeling and data assimilation modeling. In this review, these three types of the ionospheric model are briefly introduced with recently available models. And among those approaches, fundamental aspects of the physics-based ionospheric model will be described using the basic equations governing the mid-latitude ionosphere. Then a numerical solution of the equations will be discussed with required boundary conditions.

Ground-based Observations of the Polar Region Space Environment at the Jang Bogo Station, Antarctica

  • Kwon, Hyuck-Jin;Lee, Changsup;Jee, Geonhwa;Ham, Young-Bae;Kim, Jeong-Han;Kim, Yong Ha;Kim, Khan-Hyuk;Wu, Qian;Bullett, Terence;Oh, Suyeon;Kwak, Young-Sil
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.185-193
    • /
    • 2018
  • Jang Bogo Station (JBS), the second Korean Antarctic research station, was established in Terra Nova Bay, Antarctica ($74.62^{\circ}S$ $164.22^{\circ}E$) in February 2014 in order to expand the Korea Polar Research Institute (KOPRI) research capabilities. One of the main research areas at JBS is space environmental research. The goal of the research is to better understand the general characteristics of the polar region ionosphere and thermosphere and their responses to solar wind and the magnetosphere. Ground-based observations at JBS for upper atmospheric wind and temperature measurements using the Fabry-Perot Interferometer (FPI) began in March 2014. Ionospheric radar (VIPIR) measurements have been collected since 2015 to monitor the state of the polar ionosphere for electron density height profiles, horizontal density gradients, and ion drifts. To investigate the magnetosphere and geomagnetic field variations, a search-coil magnetometer and vector magnetometer were installed in 2017 and 2018, respectively. Since JBS is positioned in an ideal location for auroral observations, we installed an auroral all-sky imager with a color sensor in January 2018 to study substorms as well as auroras. In addition to these observations, we are also operating a proton auroral imager, airglow imager, global positioning system total electron content (GPS TEC)/scintillation monitor, and neutron monitor in collaboration with other institutes. In this article, we briefly introduce the observational activities performed at JBS and the preliminary results of these observations.

Observations of the Aurora by Visible All-Sky Camera at Jang Bogo Station, Antarctica

  • Jee, Geonhwa;Ham, Young-Bae;Choi, Yoonseung;Kim, Eunsol;Lee, Changsup;Kwon, Hyuckjin;Trondsen, Trond S.;Kim, Ji Eun;Kim, Jeong-Han
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.203-215
    • /
    • 2021
  • The auroral observation has been started at Jang Bogo Station (JBS), Antarctica by using a visible All-sky camera (v-ASC) in 2018 to routinely monitor the aurora in association with the simultaneous observations of the ionosphere, thermosphere and magnetosphere at the station. In this article, the auroral observations are introduced with the analysis procedure to recognize the aurora from the v-ASC image data and to compute the auroral occurrences and the initial results on their spatial and temporal distributions are presented. The auroral occurrences are mostly confined to the northern horizon in the evening sector and extend to the zenith from the northwest to cover almost the entire sky disk over JBS at around 08 MLT (magnetic local time; 03 LT) and then retract to the northeast in the morning sector. At near the magnetic local noon, the occurrences are horizontally distributed in the northern sky disk, which shows the auroral occurrences in the cusp region. The results of the auroral occurrences indicate that JBS is located most of the time in the polar cap near the poleward boundary of the auroral oval in the nightside and approaches closer to the oval in the morning sector. At around 08 MLT (03 LT), JBS is located within the auroral oval and then moves away from it, finally being located in the cusp region at the magnetic local noon, which indicates that the location of JBS turns out to be ideal to investigate the variabilities of the poleward boundary of the auroral oval from long-term observations of the auroral occurrences. The future plan for the ground auroral observations near JBS is presented.

Comparison between Ionospheric and plasmaspheric TECs measured from JASON satellite: plasmaspheric flux

  • Lee, Han-Byul;Jee, Geon-Hwa;Kim, Yong-Ha;Chung, Jong-Kyun
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.27.3-27.3
    • /
    • 2011
  • The plasmasphere is filled with the ions and electron transported mostly from the mid-latitude ionosphere. In the topside ionosphere where the $O^+$ ions are still major ions, the $O^+$ ions are in chemical equilibrium with the $H^+$ ions and exchange their charges with each other's parent atoms with similar rates in both reactions. During the day, the newly produced $H^+$ ions flow upward to fill the plasmasphere while they flow downward and contribute to the maintenance of the ionospheric density at night under the geomagnetically quiet condition. The ionosphere and plasmasphere are coupled by these plasma fluxes and therefore strongly affect each other. In order to study these coupling we utilized the plasma density measurements from JASON satellite. This satellite measures vertical total electron content (TEC) from the ground to the satellite orbit (about 1336 km) and slant TEC from the satellite orbit to much higher GPS satellites by using the on-board dual-frequency altimeter and GPS receiver, respectively. The former measurement can represent the ionospheric TEC while the latter can represent the plasmaspheric TEC in the equatorial region. We compared these data with different seasons, solar activities and local times, and the results will be presented.

  • PDF

Formation CubeSat Constellation, SNIPE mission

  • Lee, Jaejin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.58.4-59
    • /
    • 2021
  • This presentation introduces Korea's SNIPE (Small scale magNespheric and Ionospheric Plasma Experiment) mission, formation flying CubeSat constellation. Observing particles and waves on a single satellite suffers from inherent space-time ambiguity. To observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere, four 6U CubeSats (~ 10 kg) will be launched into a polar orbit of the altitude of ~500 km in 2021. The distances of each satellite will be controlled from 10 km to more than 100 km by formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, solid-state telescope, magnetometer, and Langmuir probe. All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium modules provide an opportunity to upload changes in operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather.

  • PDF

Characteristics of the Polar Ionosphere Based on the Chatanika and Sondrestrom Incoherent Scatter Radars

  • Kwak, Young-Sil;Ahn, Byung-Ho
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.489-499
    • /
    • 2004
  • The climatological characteristics of the polar ionospheric currents obtained from the simultaneous observations of the ionospheric electric field and conductivity are examined. For this purpose, 43 and 109 days of measurements from the Chatanika and Sondrestrom incoherent scatter radars are utilized respectively. The ionospheric current density is compared with the corresponding ground magnetic disturbance. Several interesting characteristics about the polar ionosphere are apparent from this study: (1) The sun determines largely the conductance over the Sondrestrom radar, while the nighttime conductance distribution over the Chatanika radar is significantly affected by auroral precipitation. (2) The regions of the maximum N-S electric field over the Chatanika radar are located approximately at the dawn and dusk sectors, while they tend to shift towards dayside over the Sondrestrom radar. The N-S component over Son-drestrom is slightly stronger than Chatanika. However, the E-W component over Chatanika is negligible compared to that of Sondrestrom. (3) The E-W ionospheric current flows dominantly in the night hemisphere over Chatanika, while it flows in the sunlit hemisphere over Sondrestrom. The N-S current over Chatanika flows prominently in the dawn and dusk sectors, while a strong southward current flows in the prenoon sector over Sondrestrom. (4) The assumption of infinite sheet current approximation is far from realistic, underestimating the current density by a factor of 2 or more. It is particularly serious for the higher latitude region. (5) The correlation between ${\Delta}H\;and\;J_E$ is higher than the one between ${\Delta}D\;and\;J_N$, indicating that field-aligned current affects ${\Delta}D$significantly.

Plasmaspheric contribution to the GPS TEC

  • Jee, Geon-Hwa;Lee, Han-Byul;Kim, Yong-Ha;Chung, Jong-Kyun;Cho, Jung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.30.3-31
    • /
    • 2010
  • We performed a comprehensive comparison between GPS Global Ionosphere Map (GIM) and TOPEX/Jason (T-J) TEC data for the periods of 1998~2009 in order to assess the performance of GIM over the global ocean where the GPS ground stations are very sparse. Using the GIM model constructed by CODE at University of Bern, the GIM TEC values were obtained along the T-J satellite orbit at the locations and times of the measurements and then binned into various geophysical conditions for direct comparison with the T-J TECs. On the whole, the GIM model was able to reproduce the spatial and temporal variations of the global ionosphere as well as the seasonal variations. However, the GIM model was not accurate enough to represent the well-known ionospheric structures such as the equatorial anomaly, the Weddell Sea Anomaly, and the longitudinal wave structure. Furthermore, there seems to be a fundamental limitation of the model showing the unexpected negative differences (i.e., GPS < T-J) in the northern high latitude and the southern middle and high latitude regions. The positive relative differences (i.e., GIM > T-J) at night represent the plasmaspheric contribution to GPS TEC, which is maximized, reaching up to 100% of the corresponding T-J TEC values in the early morning sector. In particular, the relative differences decreased with increasing solar activity and this may indicate that the plasmaspheric contribution to the maintenance of the nighttime ionosphere does not increase with solar activity, which is different from what we normally anticipate. Among these results, the plasmaspheric contribution to the ionospheric GPS TEC will be presented in this talk and the rest of it will presented in the companion paper (poster presentation).

  • PDF