Browse > Article
http://dx.doi.org/10.5140/JASS.2021.38.4.203

Observations of the Aurora by Visible All-Sky Camera at Jang Bogo Station, Antarctica  

Jee, Geonhwa (Korea Polar Research Institute)
Ham, Young-Bae (Korea Polar Research Institute)
Choi, Yoonseung (Korea Polar Research Institute)
Kim, Eunsol (Korea Polar Research Institute)
Lee, Changsup (Korea Polar Research Institute)
Kwon, Hyuckjin (Korea Polar Research Institute)
Trondsen, Trond S. (Korea Polar Research Institute)
Kim, Ji Eun (Keo Scientific Ltd.)
Kim, Jeong-Han (Korea Polar Research Institute)
Publication Information
Journal of Astronomy and Space Sciences / v.38, no.4, 2021 , pp. 203-215 More about this Journal
Abstract
The auroral observation has been started at Jang Bogo Station (JBS), Antarctica by using a visible All-sky camera (v-ASC) in 2018 to routinely monitor the aurora in association with the simultaneous observations of the ionosphere, thermosphere and magnetosphere at the station. In this article, the auroral observations are introduced with the analysis procedure to recognize the aurora from the v-ASC image data and to compute the auroral occurrences and the initial results on their spatial and temporal distributions are presented. The auroral occurrences are mostly confined to the northern horizon in the evening sector and extend to the zenith from the northwest to cover almost the entire sky disk over JBS at around 08 MLT (magnetic local time; 03 LT) and then retract to the northeast in the morning sector. At near the magnetic local noon, the occurrences are horizontally distributed in the northern sky disk, which shows the auroral occurrences in the cusp region. The results of the auroral occurrences indicate that JBS is located most of the time in the polar cap near the poleward boundary of the auroral oval in the nightside and approaches closer to the oval in the morning sector. At around 08 MLT (03 LT), JBS is located within the auroral oval and then moves away from it, finally being located in the cusp region at the magnetic local noon, which indicates that the location of JBS turns out to be ideal to investigate the variabilities of the poleward boundary of the auroral oval from long-term observations of the auroral occurrences. The future plan for the ground auroral observations near JBS is presented.
Keywords
aurora; auroral occurrence; polar ionosphere; all-sky camera; Jang Bogo Station (JBS); antarctica;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Eather RH, Majestic Lights: The Aurora in Science, History, and the Arts (American Geophysical Union, Washington, DC, 1980).
2 Eather RH, The auroral oval-a reevaluation, Rev. Geophys. 11, 155-167 (1973). https://doi.org/10.1029/rg011i001p00155   DOI
3 Elphinstone RD, Murphree JS, Cogger LL, What is a global auroral substorm? Rev. Geophys. 34, 169-232 (1996). https://doi.org/10.1029/96rg00483   DOI
4 Newell PT, Sotirelis T, Wing S, Seasonal variations in diffuse, monoenergetic, and broadband aurora, J. Geophys. Res. Atmos. 115 (2010). https://doi.org/10.1029/2009ja014805   DOI
5 Nishimura Y, Lessard MR, Katoh Y, Miyoshi Y, Grono E, et al., Diffuse and pulsating aurora, Space Sci. Rev. 216, 4 (2020). https://doi.org/10.1007/s11214-019-0629-3   DOI
6 Ozaki M, Shiokawa K, Miyoshi Y, Hosokawa K, Oyama S, et al., Microscopic observations of pulsating aurora associated with chorus element structures: coordinated Arase satellite- PWING observations, Geophys. Res. Lett. 45, 12,125-12,134 (2018). https://doi.org/10.1029/2018gl079812   DOI
7 Feldstein YI, The discovery and the first studies of the auroral oval: a review, Geomagn. Aeron. 56, 129-142 (2016). https://doi.org/10.1134/s0016793216020043   DOI
8 Xiong C, Luhr H, Wang H, Johnsen MG, Determining the boundaries of the auroral oval from CHAMP field-aligned current signatures - part 1, Ann. Geophys. 32, 609-622 (2014). https://doi.org/10.5194/angeo-32-609-2014   DOI
9 Yang Q, Liu C, Liang J, Unsupervised automatic classification of all-sky auroral images using deep clustering technology, Earth Sci. Inform. 14, 1327-1337 (2021). https://doi.org/10.1007/s12145-021-00634-1   DOI
10 Mende SB, Harris SE, Frey HU, Angelopoulos V, Russell CT, et al., The THEMIS array of ground-based observatories for the study of auroral substorms, Space Sci. Rev. 141, 357 (2008). https://doi.org/10.1007/s11214-008-9380-x   DOI
11 Ham YB, Jee G, Lee C, Kwon HJ, Kim JH, et al., Observations of the polar ionosphere by the vertical incidence pulsed ionospheric radar at Jang Bogo station, Antarctica, J. Astron. Space Sci. 37, 143-156 (2020). https://doi.org/10.5140/JASS.2020.37.2.143   DOI
12 Heelis RA, The polar ionosphere, Rev. Geophys. 20, 567-576 (1982). https://doi.org/10.1029/rg020i003p00567   DOI
13 Karlsson T, Andersson L, Gillies DM, Lynch K, Marghitu O, et al., Quiet, discrete auroral arcs-observations, Space Sci. Rev. 216, 16 (2020). https://doi.org/10.1007/s11214-020-0641-7   DOI
14 Kim JE, Kim JH, Jee G, Lee C, Kwon HJ, et al., Ground-based observations for the upper atmosphere at Jang Bogo station, Antarctica: preliminary results, Curr. Sci. 115, 1674-1678 (2018). https://doi.org/10.18520/cs/v115/i9/1674-1678   DOI
15 Newell PT, Greenwald RA, Ruohoniemi JM, The role of the ionosphere in aurora and space weather, Rev. Geophys. 39, 137-149 (2001). https://doi.org/10.1029/1999rg000077   DOI
16 Kwon HJ, Lee C, Jee G, Ham YB, Kim JH, et al., Ground-based observations of the polar region space environment at the Jang Bogo station, Antarctica, J. Astron. Space Sci. 35, 185-193 (2018). https://doi.org/10.5140/jass.2018.35.3.185   DOI
17 Lu G, Richmond AD, Luhr H, Paxton L, High-latitude energy input and its impact on the thermosphere, J. Geophys. Res. Atmos. 121, 7108-7124 (2016). https://doi.org/10.1002/2015ja022294   DOI
18 Milan SE, Hutchinson J, Boakes PD, Hubert B, Influences on the radius of the auroral oval, Ann. Geophys. 27, 2913-2924 (2009). https://doi.org/10.5194/angeo-27-2913-2009   DOI
19 Newell PT, Sotirelis T, Wing S, Diffuse, monoenergetic, and broadband aurora: the global precipitation budget, J. Geophys. Res. Atmos. 114 (2009). https://doi.org/10.1029/2009ja014326   DOI
20 Newell PT, Meng CI, Lyons KM, Suppression of discrete aurorae by sunlight, Nature. 381, 766-767 (1996). https://doi.org/10.1038/381766a0   DOI
21 Syrjasuo MT, Donovan EF, Diurnal auroral occurrence statistics obtained via machine vision, Ann. Geophys. 22, 1103-1113 (2004). https://doi.org/10.5194/angeo-22-1103-2004   DOI
22 Akasofu SI, Auroral substorms as an electrical discharge phenomenon, Prog. Earth Planet. Sci. 2, 20 (2015). https://doi.org/10.1186/s40645-015-0050-9   DOI
23 Akasofu SI, Discrete, continuous and diffuse auroras, Planet. Space Sci. 22, 1723-1726 (1974). https://doi.org/10.1016/0032-0633(74)90114-7   DOI
24 Rao J, Partamies N, Amariutei O, Syrjasuo M, Sande KEA, Automatic auroral detection in color all-sky camera images, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 4717-4725 (2014). https://doi.org/10.1109/jstars.2014.2321433   DOI
25 Akasofu SI, The aurora: an electrical discharge phenomenon surrounding the Earth, Rep. Prog. Phys. 44, 1123 (1981). https://doi.org/10.1088/0034-4885/44/10/003   DOI
26 Angelopoulos V, The THEMIS mission, Space Sci. Rev. 141, 5 (2008). https://doi.org/10.1007/s11214-008-9336-1   DOI
27 Beckers B, Beckers P, A general rule for disk and hemisphere partition into equal-area cells, Comput. Geom. 45, 275-283 (2012). https://doi.org/10.1016/j.comgeo.2012.01.011   DOI
28 Borovsky JE, Still in the dark, Nature. 393, 312-313 (1998). https://doi.org/10.1038/30616   DOI
29 Donovan E, Mende S, Jackel B, Frey H, Syrjasuo M, et al., The THEMIS all-sky imaging array-system design and initial results from the prototype imager, J. Atmos. Sol. Terr. Phys. 68, 1472-1487 (2006). https://doi.org/10.1016/j.jastp.2005.03.027   DOI
30 Sangalli L, Partamies N, Syrjasuo M, Enell CF, Kauristie K, et al., Performance study of the new EMCCD-based all-sky cameras for auroral imaging, Int. J. Remote Sens. 32, 2987- 3003 (2011). https://doi.org/10.1080/01431161.2010.541505   DOI
31 Schroder W, Some aspects of the history of auroral research, Eos Trans. Am. Geophys. Union. 60, 1035-1036 (1979). https://doi.org/10.1029/eo060i051p01035   DOI
32 Shepherd SG, Altitude-adjusted corrected geomagnetic coordinates: definition and functional approximations, J. Geophys. Res. Space Phys. 119, 7501-7521 (2014). https://doi.org/10.1002/2014ja020264   DOI
33 Shiokawa K, Nose M, Imajo S, Tanaka YM, Miyoshi Y, et al., Arase observation of the source region of auroral arcs and diffuse auroras in the inner magnetosphere, J. Geophys. Res. Space Phys. 125, e2019JA027310 (2020). https://doi.org/10.1029/2019JA027310   DOI
34 Wagner D, Neuhauser R, Variation of the auroral oval size and offset for different magnetic activity levels described by the Kp-index, Astron. Nachr. 340, 483-493 (2019). https://doi.org/10.1002/asna.201913601   DOI
35 Stephenson FR, Willis DM, Hallinan TJ, The earliest datable observation of the aurora borealis, Astron. Geophys. 45, 6.15- 6.17 (2004). https://doi.org/10.1046/j.1468-4004.2003.45615.x   DOI
36 Swift DW, Mechanisms for auroral precipitation: a review, Rev. Geophys. 19, 185-211 (1981). https://doi.org/10.1029/rg019i001p00185   DOI