DOI QR코드

DOI QR Code

Observations for the Ionosphere Using European Incoherent Scatter (EISCAT) in the Dayside Polar Cap/Cusp and Auroral Region

  • Geonhwa Jee (Division of Atmospheric Sciences, Korea Polar Research Institute) ;
  • Eun-Young Ji (School of Space Research, Kyung Hee University) ;
  • Eunsol Kim (Division of Atmospheric Sciences, Korea Polar Research Institute) ;
  • Young-Sil Kwak (Department of Polar Science, Korea University of Science and Technology) ;
  • Changsup Lee (Division of Atmospheric Sciences, Korea Polar Research Institute) ;
  • Hyuck-Jin Kwon (Division of Atmospheric Sciences, Korea Polar Research Institute) ;
  • Ji-Eun Kim (Division of Atmospheric Sciences, Korea Polar Research Institute) ;
  • Young-Bae Ham (Division of Atmospheric Sciences, Korea Polar Research Institute) ;
  • Ji-Hee Lee (Division of Atmospheric Sciences, Korea Polar Research Institute) ;
  • Jeong-Han Kim (Division of Atmospheric Sciences, Korea Polar Research Institute) ;
  • Tae-Yong Yang (Korea Astronomy and Space Science Institute) ;
  • Hosik Kam (Korea Astronomy and Space Science Institute)
  • Received : 2022.12.15
  • Accepted : 2023.01.03
  • Published : 2023.03.15

Abstract

Korea Polar Research Institute (KOPRI) and Korea Astronomy and Space Institute (KASI) have been participating in the European Incoherent Scatter (EISCAT) Scientific Association as an affiliate institution in order to observe the polar ionosphere since 2015. During the period of December 16-21, 2016 and January 3-9, 2018, the observations for the polar ionospheric parameters such as the electron density profiles, ion drift, and electron/ion temperature are carried out in the polar cap/cusp region by the EISCAT Svalbard radar (ESR). The purpose of the observations is to investigate the characteristic of the winter ionosphere in the dayside polar cap/cusp region. In this paper, we briefly report the results of the ESR observations for winter daytime ionosphere and also the simultaneous observations for the ionosphere-thermosphere system together with the balloon-borne instrument High-Altitude Interferometer WIND Experiment (HIWIND) performed by the High Altitude Observatory (HAO), National Center for Atmospheric Research (NCAR). We further introduce our research activities using long-term EISCAT observations for the occurrence of ion upflow and the climatology of the polar ionospheric density profiles in comparison with the mid-latitude ionosphere. Finally, our future research plans will briefly be introduced.

Keywords

Acknowledgement

This work was supported by Korea Polar Research Institute (KOPRI) grant funded by the Ministry of Oceans and Fisheries (KOPRI PE23020). Y.-S. Kwak was supported by the basic research funding from Korea Astronomy and Space Science Institute (KASI). The EISCAT is an international association supported by research organizations in China (CRIRP), Finland (SA), Japan (NIPR and ISEE), Norway (NFR), Sweden (VR), and the United Kingdom (UKRI).

References

  1. Cai HT, Ma SY, Fan Y, Liu YC, Schlegel K, Climatological features of electron density in the polar ionosphere from long-term observations of EISCAT/ESR radar, Ann. Geophys. 25, 2561-2569 (2007). https://doi.org/10.5194/angeo-25-2561-2007
  2. Endo M, Fujii R, Ogawa Y, Buchert SC, Nozawa S, et al., Ion upflow and downflow at the topside ionosphere observed by the EISCAT VHF radar, Ann. Geophys. 18, 170-181 (2000). https://doi.org/10.1007/s00585-000-0170-3
  3. Fontaine D, Structure and dynamics of the Earth's polar ionosphere: recent results inferred from incoherent scatter sounders, Plasma Sources Sci. Technol. 11, A113 (2002). https://doi.org/10.1088/0963-0252/11/3A/317
  4. Ham YB, Jee G, Lee C, Kwon HJ, Kim JH, et al., Observations of the polar ionosphere by the vertical incidence pulsed ionospheric radar at Jang Bogo Station, Antarctica, J. Astron. Space Sci. 37, 143-156 (2020). https://doi.org/10.5140/JASS.2020.37.2.143
  5. Heelis RA, The polar ionosphere, Rev. Geophys. 20, 567-576 (1982). https://doi.org/10.1029/rg020i003p00567
  6. Jee G, Kim JH, Lee C, Kim YH, Ground-based observations for the upper atmosphere at King Sejong Station, Antarctica, J. Astron. Space Sci. 31, 169-176 (2014). https://doi.org/10.5140/jass.2014.31.2.169
  7. Ji EY, Jee G, Lee C, Characteristics of the occurrence of ion upflow in association with ion/electron heating in the polar ionosphere, J. Geophys. Res. Space Phys. 124, 6226-6236 (2019). https://doi.org/10.1029/2019JA026799
  8. Kim E, Jee G, Ji EY, Kim YH, Lee C, et al., Climatology of polar ionospheric density profile in comparison with mid-latitude ionosphere from long-term observations of incoherent scatter radars: a review, J. Atmos. Sol. Terr. Phys. 211, 105449 (2020). https://doi.org/10.1016/j.jastp.2020.105449
  9. Kwon HJ, Lee C, Jee G, Ham Y, Kim JH, et al., Ground-based observations of the polar region space environment at the Jang Bogo station, Antarctica, J. Astron. Space Sci. 35, 185-193 (2018). https://doi.org/10.5140/jass.2018.35.3.185
  10. Lehtinen M, Markkanen J, Vaananen A, Huuskonen A, Damtie B, et al., A new incoherent scatter technique in the EISCAT Svalbard Radar, Radio Sci. 37, 3-1-3-14 (2002). https://doi.org/10.1029/2001rs002518
  11. Liu C, Horwitz JL, Richards PG, Effects of frictional ion heating and soft-electron precipitation on high-latitude F-region upflows, Geophys. Res. Lett. 22, 2713-2716 (1995). https://doi.org/10.1029/95GL02551
  12. McCrea I, Aikio A, Alfonsi L, Belova E, Buchert S, et al., The science case for the EISCAT_3D radar, Prog. Earth Planet. Sci. 2, 21 (2015). https://doi.org/10.1186/s40645-015-0051-8
  13. Moen J, Qiu XC, Carlson HC, Fujii R, McCrea IW, On the diurnal variability in F2-region plasma density above the EISCAT Svalbard radar, Ann. Geophys. 26, 2427-2433 (2008). https://doi.org/10.5194/angeo-26-2427-2008
  14. Ogawa Y, Buchert SC, Fujii R, Nozawa S, van Eyken AP, Characteristics of ion upflow and downflow observed with the European Incoherent Scatter Svalbard radar, J. Geophys. Res. Space Phys. 114, A05305 (2009). https://doi.org/10.1029/2008JA013817
  15. Ogawa Y, Buchert SC, Sakurai A, Nozawa S, Fujii R, Solar activity dependence of ion upflow in the polar ionosphere observed with the European Incoherent Scatter (EISCAT) Tromso UHF radar, J. Geophys. Res. Space Phys. 115, A07310 (2010). https://doi.org/10.1029/2009JA014766
  16. Ogawa Y, Fujii R, Buchert SC, Nozawa S, Ohtani S, Simultaneous EISCAT Svalbard radar and DMSP observations of ion upflow in the dayside polar ionosphere, J. Geophys. Res. Space Phys. 108, A3 (2003). https://doi.org/10.1029/2002JA009590
  17. Rishbeth H, van Eyken AP, EISCAT: early history and the first ten years of operation, J. Atmos. Terr. Phys. 55, 525-542 (1993). https://doi.org/10.1016/0021-9169(93)90002-G
  18. Sanchez ER, StrOmme A, Incoherent scatter radar-FAST satellite common volume observations of upflow-to-outflow conversion, J. Geophys. Res. Space Phys. 119, 2649-2674 (2014). https://doi.org/10.1002/2013JA019096
  19. Strangeway RJ, Ergun RE, Su YJ, Carlson CW, Elphic RC, Factors controlling ionospheric outflows as observed at intermediate altitudes, J. Geophys. Res. Space Phys. 110, A03221 (2005). https://doi.org/10.1029/2004JA010829
  20. Wahlund JE, Opgenoorth HJ, Haggstrom I, Winser KJ, Jones GOL, EISCAT observations of topside ionospheric ion outflows during auroral activity: revisited, J. Geophys. Res. Space Phys. 97, 3019-3037 (1992). https://doi.org/10.1029/91JA02438
  21. Wannberg G, History of EISCAT - part 5: operation and development of the system during the first 2 decades, Hist. Geo Space Sci. 13, 1-21 (2022). https://doi.org/10.5194/hgss13-1-2022
  22. Wannberg G, Wolf I, Vanhainen LG, Koskenniemi K, Rottger J, et al., The EISCAT Svalbard radar: A case study in modern incoherent scatter radar system design, Radio Sci. 32, 2283-2307 (1997). https://doi.org/10.1029/97rs01803
  23. Wu Q, Knipp D, Liu J, Wang W, Haggstrom I, et al., What do the new 2018 HIWIND thermospheric wind observations tell us about high-latitude ion-neutral coupling during daytime? J. Geophys. Res. Atmos. 124, 6173-6181 (2019a). https://doi.org/10.1029/2019JA026776
  24. Wu Q, Knipp D, Liu J, Wang W, Varney R, et al., HIWIND observation of summer season polar cap thermospheric winds, J. Geophys. Res. Space Phys. 124, 9270-9277 (2019b). https://doi.org/10.1029/2019JA027258
  25. Wu Q, Wang W, Roble RG, Haggstrom I, Stromme A, First daytime thermospheric wind observation from a ballon-borne FabryPerot interferometer over Kiruna (68N), Geophys. Res. Lett. 39, L14104 (2012). https://doi.org/10.1029/2012GL052533
  26. Xu S, Zhang BC, Liu RY, Guo LX, Wu YW, Comparative studies on ionospheric climatological features of NmF2 among the Arctic and Antarctic stations, J. Atmos. Sol. Terr. Phys. 119, 63-70 (2014). https://doi.org/10.1016/j.jastp.2014.06.016