• Title/Summary/Keyword: polar coordinate

Search Result 143, Processing Time 0.025 seconds

Characteristics Analysis of Radially Magnetized Tubular type Magnetic Coupling (반경 방향으로 자화된 Tubular 타입 자기 커플링의 특성 해석)

  • Kim, Chang-Woo;Jung, Kyoung-Hun;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1551-1557
    • /
    • 2015
  • Magnetic coupling is used where required high reliability. because magnetic coupling's durability is stronger than mechanical coupling's durability. This paper shows the characteristics of radially magnetized tubular type magnetic coupling by using Analytical method such as space harmonic method. Analytical method was used, to find force characteristics. First, on the basis of the magnetic vector potential and two-dimensional(2-D) polar-coordinate system, the magnetic field solutions of the radially magnetized permanent magnet are obtained. And we obtain the analytical solutions for the flux density produced by permanent magnet. Finally, we can calculate the force by using the Maxwell stress tensor. And then, Finite element method(FEM) is used to validate force characteristics.

Distortions of Spherical Data in the Wavenumber Domain

  • Kim, Jeong-Woo;Lee, Dong-Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • Sampling rates become inconsistent when spatial data in the spherical coordinate are resampled with respect to latitudinal or longitudinal degree for mathematical processes such as Fourier Transform, and this results in distortions of the processed data in the wavenumber domain. These distortions are more evident in the polar regions. An example is presented to show such distortions during the recovery process of free-air gravity anomalies from ERS-1 satellite radar altimeter data from the Barents Sea in the Russian Arctic, and a method is presented to minimize the distortion using the Lambert Conformal Conic map projection. This approach was found to enhance the free-air gravity anomalies in both data and wavenumber domains.

Efficient geometric nonlinear analyses of circular plate bending problems

  • Duan, Mei
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.405-420
    • /
    • 2005
  • In this paper, a hybrid/mixed nonlinear shell element is developed in polar coordinate system based on Hellinger/Reissner variational principle and the large-deflection theory of plate. A numerical solution scheme is formulated using the hybrid/mixed finite element method (HMFEM), in which the nodal values of bending moments and the deflection are the unknown discrete parameters. Stability of the present element is studied. The large-deflection analyses are performed for simple supported and clamped circular plates under uniformly distributed and concentrated loads using HMFEM and the traditional displacement finite element method. A parametric study is also conducted in the research. The accuracy of the shell element is investigated using numerical computations. Comparisons of numerical solutions are made with theoretical results, finite element analysis and the available numerical results. Excellent agreements are shown.

FINITE ELEMENT SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATION WITH MULTIPLE CONCAVE CORNERS

  • Kim, Seokchan;Woo, Gyungsoo
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.785-794
    • /
    • 2018
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous Dirichlet boundary condition with one corner singularity at the origin, and compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. This approach uses the polar coordinate and the cut-off function to control the singularity and the boundary condition. In this paper we consider Poisson equations with multiple singular points, which involves different cut-off functions which might overlaps together and shows the way of cording in FreeFEM++ to control the singular functions and cut-off functions with numerical experiments.

Strain based finite element for the analysis of heterogeneous hollow cylinders subjected to thermo-mechanical loading

  • Bouzeriba, Asma;Bouzrira, Cherif
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.825-834
    • /
    • 2022
  • The effectiveness and accuracy of the strain-based approach applied for analysis of two kinds of heterogeneous hollow cylinders subjected to thermal and mechanical loads are examined in this study. One is a multilayer cylinder in which the material in each layer is assumed to be linearly elastic, homogeneous and isotropic. Another is a hollow cylinder made of functionally graded materials with arbitrary gradient. The steady state condition without heat generation is considered. A sector in-plane finite element in the polar coordinate system based on strain approach is used. This element has only three degrees of freedom at each corner node. Analytical solutions available in the literature are presented to illustrate the accuracy of the sector element used. The obtained results for displacements and stresses are shown to be in good agreement with the analytical solutions.

BIFURCATIONS OF STOCHASTIC IZHIKEVICH-FITZHUGH MODEL

  • Nia, Mehdi Fatehi;Mirzavand, Elaheh
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.402-418
    • /
    • 2022
  • Noise is a fundamental factor to increased validity and regularity of spike propagation and neuronal firing in the nervous system. In this paper, we examine the stochastic version of the Izhikevich-FitzHugh neuron dynamical model. This approach is based on techniques presented by Luo and Guo, which provide a general framework for the bifurcation and stability analysis of two dimensional stochastic dynamical system as an Itô averaging diffusion system. By using largest lyapunov exponent, local and global stability of the stochastic system at the equilibrium point are investigated. We focus on the two kinds of stochastic bifurcations: the P-bifurcation and the D-bifurcations. By use of polar coordinate, Taylor expansion and stochastic averaging method, it is shown that there exists choices of diffusion and drift parameters such that these bifurcations occurs. Finally, numerical simulations in various viewpoints, including phase portrait, evolution in time and probability density, are presented to show the effects of the diffusion and drift coefficients that illustrate our theoretical results.

Cell Edge SINR of Multi-cell MIMO Downlink Channel (다중 셀 MIMO 하향채널의 셀 에지 SINR)

  • Park, Ju-Yong;Kim, Ki-Jung;Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.105-117
    • /
    • 2015
  • In this paper, we consider 19 cells with the two tiers for polar-rectangular coordinates (PRCs) and provide the cell edge performance of cellular networks based on distance from cell center i.e., BS (base station). When FFR is applied(or adopted) to cell edge, it is expected that BS cooperation, or a coordinated multipoint (CoMP) multiple access strategy will further improve the system performance. We proposed a new method to evaluate the sum rate capacity of the MIMO DC of multicell system. We improve the performance of cell edge users for intercell interference cancelation in cooperative downlink multicell systems. Simulation results show that the proposed scheme outperforms the reference schemes, in terms of cell edge SINR (signal-to-interference-noise ratio) with a minimal impact on the network path loss exponent. We show 13 dB improvements in cell-edge SINR by using reuse of three relative to reuse of one. BS cooperation has been proposed to mitigate the cell edge effect.

A Study for Evaluating of Voltage Stability Margin Considering Shunt Capacitor (조상설비를 고려한 전압안정성 여유전력의 평가에 관한 연구)

  • 김세영
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 1998
  • This paper presents a fast calculation method for evaluating of voltage stability margin (MW) using the line flow equation in polar form. Here, Line flow equations $(P_{ij},\;Q_{ij}$ are comprised of state variable, $V_i,\;{\Delta}_i,\;V_j$ and ${Delta}_j$, and line parameter, r and x. using the feature of polar coordinate, these becomes one equation with two variables, $V_j,;V_j$. Moreover, if bus j is slack or generator bus, which is specified voltage magnitude in load flow calculation, it becomes one equation with one variable $V_ i $ that is, may be formulated with the second-order equation for $V^2_i$. Therefore, multiple load flow solutions may be obtained with simple computation. The obtained load flow multiple solutions are used for evaluating of voltage stability through sensitivity analysis or its closeness. Also, the method is proposed to calculate for voltage stability margin considering shunt capacitor, which is important element for evaluating of voltage stability. The proposed method was validated to sample systems.

  • PDF

Development of Deep Learning Model for Fingerprint Identification at Digital Mobile Radio (무선 단말기 Fingerprint 식별을 위한 딥러닝 구조 개발)

  • Jung, Young-Giu;Shin, Hak-Chul;Nah, Sun-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2022
  • Radio frequency fingerprinting refers to a methodology that extracts hardware-specific characteristics of a transmitter that are unintentionally embedded in a transmitted waveform. In this paper, we put forward a fingerprinting feature and deep learning structure that can identify the same type of Digital Mobile Radio(DMR) by inputting the in-phase(I) and quadrature(Q). We proposes using the magnitude in polar coordinates of I/Q as RF fingerprinting feature and a modified ResNet-1D structure that can identify them. Experimental results show that our proposed modified ResNet-1D structure can achieve recognition accuracy of 99.5% on 20 DMR.

Application of the Expansion Method for Spherical Harmonics for Computation of Two Center Overlap Integrals (Ⅱ) (Two Center Overlap Integrals의 계산을 위한 Spherical Hamonics 전개방법의 응용 (제2보))

  • Oh Se Woung;Ahn Sangwoon
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.125-131
    • /
    • 1979
  • A method for calculation of two center overlap integrals for a pair of Slater type orbitals was developed by Mulliken et al. In this method the spherical polar coordinates for a pair of Slater type orbitals located at two different points are required to be transformed into a spheroidal coordinate set for calculation of two center overlap integrals. A new method, the expansion method for spherical harmonics, in which Slater type orbitals, located at two different points, are expressed in a common coordinate system has been applied for computation of two center overlap integrals. The new method for computation of two center overlap integrals is required to translate Slater type orbitals centered at two different points into the reference point for computation of two center overlap integrals. This work has been expanded the expansion method for spherical harmonics for computation of two center overlap integrals to $|3s{\g}$, $|5s{\g}$ and $|5s{\g}$. Master formulas for two center overlap integrals are derived for these orbitals, using the general expansion formulas. The numerical values of the two center overlap integrals evaluated for a hypothetical NO molecule are in agreement with those of the previous works.

  • PDF