DOI QR코드

DOI QR Code

Cell Edge SINR of Multi-cell MIMO Downlink Channel

다중 셀 MIMO 하향채널의 셀 에지 SINR

  • 박주용 (신경대학교 인터넷정보통신학과) ;
  • 김기중 (신경대학교 인터넷정보통신학과) ;
  • 김정수 (숭실사이버대학교 컴퓨터정보통신학과) ;
  • 이문호 (전북대학교 전자정보공학부)
  • Received : 2015.07.02
  • Accepted : 2015.08.07
  • Published : 2015.08.31

Abstract

In this paper, we consider 19 cells with the two tiers for polar-rectangular coordinates (PRCs) and provide the cell edge performance of cellular networks based on distance from cell center i.e., BS (base station). When FFR is applied(or adopted) to cell edge, it is expected that BS cooperation, or a coordinated multipoint (CoMP) multiple access strategy will further improve the system performance. We proposed a new method to evaluate the sum rate capacity of the MIMO DC of multicell system. We improve the performance of cell edge users for intercell interference cancelation in cooperative downlink multicell systems. Simulation results show that the proposed scheme outperforms the reference schemes, in terms of cell edge SINR (signal-to-interference-noise ratio) with a minimal impact on the network path loss exponent. We show 13 dB improvements in cell-edge SINR by using reuse of three relative to reuse of one. BS cooperation has been proposed to mitigate the cell edge effect.

본 논문에서는 PRC (polar-rectangular coordinate) 에 대한 2 tier 19 셀에 대해 고려해보고, BS 와 같은 셀 중앙으로 부터의 거리에 기반해 셀룰러 망의 셀 에지(edge) 성능을 제시한다. BS 들은 하향링크 다중 셀 시스템에서 ICI (intercell interference) 제거를 위한 자신들의 SINR (signal-to-interference-noise ratio) 을 개선하기 위해 셀 에지 user 와 협력하여 송신한다. 제안한 새로운 모델은 다중 셀 시스템의 MIMO DC sum rate 용량을 계산한다. 이 모델은 협력 하향 링크 다중 셀 시스템에서 셀 간 간섭을 제거해 셀 에지 user의 성능을 개선시킨다. 모의실험 결과 제안한 방법이 망 경로 지수에 최소 영향을 주어 셀 에지 SINR 관점에서 기존 방법들보다 좋은 성능을 보였다. 경로손실 지수가 3.6인 경우에는 reuse-1에 비해 reuse-3을 사용한 결과 셀 에지 SINR에서 대략 13 dB가 개선되었다.

Keywords

References

  1. A. Yousafzai, M. R. Nakhai, "Block QR decomposition and nearoptimal ordering in intercell cooperative multiple-input multipleoutputorthogonal frequency division multiplexing," IET Commun., vol. 4, no. 12, pp. 1452-1462, Aug. 2010. https://doi.org/10.1049/iet-com.2009.0512
  2. Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, "An introduction to the multi-user MIMO downlink," IEEE Commun. Mag., pp. 60-67, Oct. 2004
  3. H. Weingarten, Y. Steinberg, and S. Shamai, "The capacity region of the Gaussian MIMO broadcast channel," in Proc. IEEE Int. Symp. Inf. Theory, pp. 174, June 2004.
  4. Physical Layer Aspects for Evolved Universal Terrestrial Radio Access (UTRA) (Release 7), 3GPP Technical Report TR 25.814 V7.1.0, Sep. 2006.
  5. D. Gesbert, S. Hanly, H. Hung, S. S. Shitz, O. Simeone, W. Yu, "Multi-Cell MIMO Cooperative Networks: A new look at interference," IEEE Journal of Selected Areas in Communications, vol. 28, no. 9, Dce. 2010.
  6. R. Zhang, "Cooperative multi-cell block diagonalization with per-base-station power constraints," IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 1435-1445, Dec. 2010. https://doi.org/10.1109/JSAC.2010.101205
  7. M. Fallgren, "An optimization approach to joint cell, channel and power allocation in multicell relay networks," IEEE Trans. Wirel. Commun., vol. 11, no.8, pp. 2868-2875, 2012. https://doi.org/10.1109/TWC.2012.062012.111616
  8. S. Kiani, D. Gesbert, "Optimal and distributed scheduling for multicell capacity maximization," IEEE Trans. Wirel. Commun., vol.7, no.1, pp. 288-297, 2008. https://doi.org/10.1109/TWC.2008.060503
  9. L. C. Wang and C. J. Yeh, "3-cell network mimo architectures with sectorization and fractional frequency reuse," IEEE J. on Sel. Areas in Commun., vol. 29, pp. 1185 -1199, June 2011. https://doi.org/10.1109/JSAC.2011.110607
  10. L. Xu, K. Yamamoto, H. Murata, and S. Yoshida, "Cell edge capacity improvement by using adaptive base station cooperation in cellular networks with fractional frequency reuse," IEICE Transactions, pp. 1912-1918, 2010.
  11. 3GPP, R I-082469, "LTE-Advanced- Coordinated Multipoint Transmission/ reception," Ericsson, Jun. 30-Jul. 4, 2008.
  12. R1-093036, "Practical Analysis of CoMP Coordinated Beamforming," Huawei, 2009.
  13. A. Mahmud, K. A. Hamdi, N. Ramli, "Performance of fractional frequency reuse with comp at the cell-edge," 2014 IEEE Region 10 Symposium, Malahsia, 14-16 April 2014.
  14. OFDMA Downlink Inter-Cell Interference Mitigation, 3GPP Project Document R1-060 291, Feb. 2006.
  15. F. Khan, LTE for 4G Mobile Broadband air Interface Technologies and Performance, Cambridge University Press, 2009.
  16. M. Rahman, H. Yanikomeroglu, "Enhancing cell edge performance: A downlink dynamic interference avoidance scheme with inter-cell coord-ination," IEEE Trans. on Wireless Comm., vol. 9, no. 4, April 2010.
  17. X. You, D. Wang, P. Zhu, B. Sheng, "Cell edge performance of cellular mobile systems," IEEE Trans. on Selected Areas in Communications, vol. 29, no. 6, June 2011.
  18. J. V. B. James, B. Ramamurthi, "Distributed cooperative precoding with SINR based co-channel user grouping for enhanced cell edge performance," IEEE Trans. on Wireless Comm., vol. 10, no. 9, Sept. 2010
  19. N. Ul Hassan, C. Yuen, Z. Zhang, "Optimal power control and antenna selection for multi-user distributed antenna system with heterogeneous QoS constraints," Globecom'12 Workshop: Multicell Cooperation, California, USA, 3-7, December, 2012.
  20. M. H. A. Khan, K. M. Cho, M. H. Lee, J. G. Chung, "Performance of cell edge for multicell MIMO broadcast channel," IEEE 80th Vehicular Technology Conference (VTC2014-Fall), 14-17 September 2014, Vancouver, Canada.
  21. D. Tse, P. Viswanath, "Fundamentals of Wireless Communication," Cambridge University Press, 2005
  22. Y. S. Im, E. Y. Kang, "MPEG-2 Video Watermarking in Quantized DCT Domain," The Journal of The Institute of Internet, Broadcasting and Communication(JIIBC), Vol. 11, No. 1, pp. 81-86, 2011.
  23. I. Jeon, S. Kang, H. Yang, "Development of Security Quality Evaluate Basis and Measurement of Intrusion Prevention System," Journal of the Korea Academia-Industrial cooperation Society (JKAIS), Vol. 11, No. 1, pp. 81-86, 2010.