• Title/Summary/Keyword: pol

Search Result 282, Processing Time 0.038 seconds

A Novel Approach to Investigating Protein/Protein Interactions and Their Functions by TAP-Tagged Yeast Strains and its Application to Examine Yeast Transcription Machinery

  • Jung, Jun-Ho;Ahn, Yeh-Jin;Kang, Lin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.631-638
    • /
    • 2008
  • Tandem affinity purification (TAP) method combined with LC-MS/MS is the most accurate and reliable way to study the interaction of proteins or proteomics in a genome-wide scale. For the first time, we used a TAP-tag as a mutagenic tool to disrupt protein interactions at the specific site. Although lots of commonly used mutational tools exist to study functions of a gene, such as deletional mutations and site-directed mutagenesis, each method has its own demerit. To test the usefulness of a TAP-tag as a mutagenic tool, we applied a TAP-tag to RNA polymerase II, which is the key enzyme of gene expression and is controlled by hundreds of transcription factors even to transcribe a gene. Our experiment is based on the hypothesis that there will be interrupted interactions between Pol II and transcription factors owing to the TAP-tag attached at the C-terminus of each subunit of Pol II, and the abnormality caused by interrupted protein interactions can be observed by measuring a cell-cycle of each yeast strain. From ten different TAP-tagged strains, Rpb7- and Rpb12-TAP-tagged strains show severe defects in growth rate and morphology. Without a heterodimer of Rpb4/Rpb7, only the ten subunits Pol II can conduct transcription normally, and there is no previously known function of Rpb7. The observed defect of the Rpb7-TAP-tagged strain shows that Rpb7 forms a complex with other proteins or compounds and the interruption of the interaction can interfere with the normal cell cycle and morphology of the cell and nucleus. This is a novel attempt to use a TAP-tag as a proteomic tool to study protein interactions.

Monostatic RCS Reduction by Gap-Fill with Epoxy/MWCNT in Groove Pattern

  • Choi, Won-Ho;Jang, Hong-Kyu;Shin, Jae-Hwan;Song, Tae-Hoon;Kim, Jin-Kyu;Kim, Chun-Gon
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.101-106
    • /
    • 2012
  • In this study, we investigated the effect of groove pattern and gap-fill with lossy materials at 15 GHz frequency of Ku-band. We used Epoxy/MWCNT composite materials as gap-fill materials. Although epoxy does not have an absorbance capability, epoxy added conductive fillers, which are multi-walled carbon nanotubes (MWCNT), can function as radar absorbing material. Specimens were fabricated with different MWCNT mass fractions (0, 0.5, 1.0, 2.0 wt%) and their permittivity in the Ku-band was measured using the waveguide technique. We investigated the effect of gap-fill on monostatic RCS by calculating RCS with and without gap-fill. For arbitrarily chosen thickness and experimentally obtained relative permittivity, we chose the relative permittivity of MWCNT at 2 wt% (${\varepsilon}_r$=8.8-j2.4), which was the lowest reflection coefficient for given thickness of 3.3 mm at V-pol. and $80^{\circ}$ incident angle. We also checked the monostatic RCS and the field intensity inside the groove channel. In the case of H-pol, gap-fill was not affected by the monostatic RCS and magnitude was similar with or without gap-fill. However, in the case of V-pol, gap-fill effectively reduced the monostatic RCS. The field intensity inside the groove channel reveals that different RCS behaviors depend on the wave polarizations.

Association of a Newly Identified Variant of DNA Polymerase Beta (polβΔ63-123, 208-304) with the Risk Factor of Ovarian Carcinoma in India

  • Khanra, Kalyani;Bhattacharya, Chandan;Bhattacharyya, Nandan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1999-2002
    • /
    • 2012
  • Background: DNA polymerase is a single-copy gene that is considered to be part of the DNA repair machinery in mammalian cells. The encoded enzyme is a key to the base excision repair (BER) pathway. It is evident that pol beta has mutations in various cancer samples, but little is known about ovarian cancer. Aim: Identification of any variant form of $pol{\beta}$ cDNA in ovarian carcinoma and determination of association between the polymorphism and ovarian cancer risk in Indian patients. We used 152 samples to isolate and perform RT-PCR and sequencing. Results: A variant of polymerase beta (deletion of exon 4-6 and 11-13, comprising of amino acid 63-123, and 208-304) is detected in heterozygous condition. The product size of this variant is 532 bp while wild type pol beta is 1 kb. Our study of association between the variant and the endometrioid type shows that it is a statistically significant factor for ovarian cancer [OR=31.9 (4.12-246.25) with p<0.001]. The association between variant and stage IV patients further indicated risk (${\chi}^2$ value of 29.7, and OR value 6.77 with 95% CI values 3.3-13.86). The correlation study also confirms the association data (Pearson correlation values for variant/stage IV and variant/endometrioid of 0.44 and 0.39). Conclusion: Individuals from this part of India with this type of variant may be at risk of stage IV, endometrioid type ovarian carcinoma.

Development of a Genome-Wide Random Mutagenesis System Using Proofreading-Deficient DNA Polymerase ${\delta}$ in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Oh Cheol;Kim, Sang-Yoon;Hwang, Dong Hyeon;Oh, Doo-Byoung;Kang, Hyun Ah;Kwon, Ohsuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.304-312
    • /
    • 2013
  • The thermotolerant methylotrophic yeast Hansenula polymorpha is attracting interest as a potential strain for the production of recombinant proteins and biofuels. However, only limited numbers of genome engineering tools are currently available for H. polymorpha. In the present study, we identified the HpPOL3 gene encoding the catalytic subunit of DNA polymerase ${\delta}$ of H. polymorpha and mutated the sequence encoding conserved amino acid residues that are important for its proofreading 3'${\rightarrow}$5' exonuclease activity. The resulting $HpPOL3^*$ gene encoding the error-prone proofreading-deficient DNA polymerase ${\delta}$ was cloned under a methanol oxidase promoter to construct the mutator plasmid pHIF8, which also contains additional elements for site-specific chromosomal integration, selection, and excision. In a H. polymorpha mutator strain chromosomally integrated with pHIF8, a $URA3^-$ mutant resistant to 5-fluoroorotic acid was generated at a 50-fold higher frequency than in the wild-type strain, due to the dominant negative expression of $HpPOL3^*$. Moreover, after obtaining the desired mutant, the mutator allele was readily removed from the chromosome by homologous recombination to avoid the uncontrolled accumulation of additional mutations. Our mutator system, which depends on the accumulation of random mutations that are incorporated during DNA replication, will be useful to generate strains with mutant phenotypes, especially those related to unknown or multiple genes on the chromosome.

Structural Characterization of the Genome of BERV γ4 the Most Abundant Endogenous Retrovirus Family in Cattle

  • Xiao, Rui;Park, Kwangha;Oh, Younshin;Kim, Jinhoi;Park, Chankyu
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.404-408
    • /
    • 2008
  • The genome of replication-competent BERV ${\gamma}4$ provirus, which is the most abundant ERV family in the bovine genome, was characterized in detail. The BERV ${\gamma}4$ genome showed that BERV ${\gamma}4$ harbors 8576 nucleotides and has the typical 5'-long terminal repeat (LTR)-gag-pro-pol-env-LTR-3' retroviral organization with a long leader region positioned before the gag open reading frame. Multiple sequences analysis showed that the nucleotide difference between 5' and 3' LTRs was 4.2% (mean value 0.042) in average, suggesting that the provirus formed at most 13.3 million years ago. Gag separated by a stop codon from pro-pol in the same reading frame, while env resides in another reading frame lacking of a functional surface domain. According to the current bovine genome sequence assembly, the full-length BERV ${\gamma}4$ provirus sequences were only found in the chromosomes 1, 2, 6, 10, 15, 23, 26, 28, X, and unassigned, although the partial sequences almost evenly distributed in the entire bovine genome. This is the first detailed study describing the genome structure of BERV ${\gamma}4$, the most abundant ERV family present in bovine genome. Combined with our recent reports on characterization of ERVs in bovine, this study will contribute to illuminate ERVs in the cattle of which no information was previously available.

Riboflavin Inhibits Growth of Helicobacter pylori by Down-regulation of polA and dnaB Genes

  • Kwon, Hye Jin;Lee, Min Ho;Kim, Hyun Woo;Yang, Ji Yeong;Woo, Hyun Jun;Park, Min;Moon, Cheol;Kim, Sa-Hyun;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.288-295
    • /
    • 2020
  • Infection of Helicobacter pylori on gastric mucosa is associated with various gastric diseases. According to the WHO, H. pylori causes gastric cancer and has been classified as a class I carcinogen. Riboflavin is an essential vitamin which presents in a wide variety of foods. Previous studies have shown that riboflavin/UVA was effective against the growth inhibition of Staphylococcus aureus, S. epidermidis and multidrug-resistant Pseudomonas aeruginosa and had the potential for antimicrobial properties. Thus, we hypothesized that riboflavin has a potential role in the growth inhibition of H. pylori. To demonstrate inhibitory concentration of riboflavin against H. pylori, we performed agar and broth dilution methods. As a result, we found that riboflavin inhibited the growth of H. pylori. The MIC was 1 mM in agar and broth dilution test. Furthermore, to explain the inhibitory mechanism, we investigated whether riboflavin has an influence on the replication-associated molecules of the bacteria using RT-PCR to detect mRNA expression level in H. pylori. Riboflavin treatment of H. pylori led to down-regulation of polA and dnaB mRNA expression levels in a dose dependent manner. After then, we also confirmed whether riboflavin has cytotoxicity to human cells. We used AGS, a gastric cancer cell line, and treated with riboflavin did not show statistically significant decrease of cell viability. Thus, these results indicate that riboflavin can suppress the replication machinery of H. pylori. Taken together, these findings demonstrate that riboflavin inhibits growth of H. pylori by inhibiting replication of the bacteria.

Development of Power Supply for Millimeter-wave Tracking Radars (밀리미터파 추적 레이더용 전원공급기 개발)

  • Lee, Dongju;Choi, Jinkyu;Joo, Ji-Han;Kwon, Jun-Beom;Byun, Young-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.123-127
    • /
    • 2021
  • Millimeter-wave tracking radars should be operated in various environmental restrictions, thus they demand more computing power and smaller size compared to conventional tracking radars. This paper presents the design and implementation of the compact power supply for millimeter-wave tracking radar applications. To meet requirements of low voltage/high current and voltage accuracy for FPGA/DSP digital circuits, Point of Load (POL) converters are used in order to enhance power density and system efficiency. LDO (Low Dropout) is applied for the output voltage under the light load condition, then the single-input-multi-output power supply with max power of 375 W and 8 outputs is developed. The proposed power supply achieves output voltage accuracy of ±2 % and noise level of <50 mVpp % under full load conditions.

Transcriptional Regulation of Genes by Enhancer RNAs (인핸서 RNA에 의한 유전자 전사 조절)

  • Kim, Yea Woon;Kim, AeRi
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.140-145
    • /
    • 2016
  • Genes in multicellular organisms are transcribed in development, differentiation, or tissue-specific manners. The transcription of genes is activated by enhancers, which are transcription regulatory elements located at long distances from the genes. Recent studies have reported that noncoding RNAs are transcribed from active enhancers by RNA polymerase II (RNA Pol II); these are called enhancer RNAs (eRNAs). eRNAs are transcribed bi-directionally from the enhancer core, and are capped on the 5’ end but not spliced or polyadenylated on the 3’ end. The transcription of eRNAs requires the binding of transcription activators on the enhancer and associates positively with the transcription of the target gene. The transcriptional inhibition of eRNAs or the removal of eRNA transcripts results in the transcriptional repression of the coding gene. The transcriptional procedure of eRNAs causes enhancer- specific histone modifications, such as histone H3K4me1/2. eRNA transcripts directly interact with Mediator and Rad21, a cohesin subunit, generating a chromatin loop structure between the enhancer and the promoter of the target gene. The recruitment of RNA Pol II into the promoter and its elongation through the coding region are facilitated by eRNAs. Here, we will review the features of eRNAs, and discuss the mechanism of eRNA transcription and the roles of eRNAs in the transcriptional activation of target genes.