Browse > Article

Structural Characterization of the Genome of BERV γ4 the Most Abundant Endogenous Retrovirus Family in Cattle  

Xiao, Rui (Laboratory of Mammalian Genomics, Department of Animal Biotechnology, Konkuk University)
Park, Kwangha (Laboratory of Mammalian Genomics, Department of Animal Biotechnology, Konkuk University)
Oh, Younshin (Laboratory of Mammalian Genomics, Department of Animal Biotechnology, Konkuk University)
Kim, Jinhoi (Laboratory of Mammalian Genomics, Department of Animal Biotechnology, Konkuk University)
Park, Chankyu (Laboratory of Mammalian Genomics, Department of Animal Biotechnology, Konkuk University)
Abstract
The genome of replication-competent BERV ${\gamma}4$ provirus, which is the most abundant ERV family in the bovine genome, was characterized in detail. The BERV ${\gamma}4$ genome showed that BERV ${\gamma}4$ harbors 8576 nucleotides and has the typical 5'-long terminal repeat (LTR)-gag-pro-pol-env-LTR-3' retroviral organization with a long leader region positioned before the gag open reading frame. Multiple sequences analysis showed that the nucleotide difference between 5' and 3' LTRs was 4.2% (mean value 0.042) in average, suggesting that the provirus formed at most 13.3 million years ago. Gag separated by a stop codon from pro-pol in the same reading frame, while env resides in another reading frame lacking of a functional surface domain. According to the current bovine genome sequence assembly, the full-length BERV ${\gamma}4$ provirus sequences were only found in the chromosomes 1, 2, 6, 10, 15, 23, 26, 28, X, and unassigned, although the partial sequences almost evenly distributed in the entire bovine genome. This is the first detailed study describing the genome structure of BERV ${\gamma}4$, the most abundant ERV family present in bovine genome. Combined with our recent reports on characterization of ERVs in bovine, this study will contribute to illuminate ERVs in the cattle of which no information was previously available.
Keywords
BERV ${\gamma}4$; Env; Gag; genome; LTR; Pol; Pro;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Baillie, G.J., van de Lagemaat, L. Baust, N.,C., and Mager, D.L. (2004). Multiple groups of endogenous betaretroviruses in mice, rats, and other mammals. J. Virol. 78, 5784-5798   DOI   ScienceOn
2 Coffin, J.M., Hughes, S. H., and Varmus, H.E. (1997). Retroviruses. (Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press)
3 Craven, R.C., Leure-duPree, A.E., Weldon, R.A.Jr., and Wills, J.W. (1995). Genetic analysis of the major homology region of the Rous sarcoma virus Gag protein. J. Virol. 69, 4213-4227
4 Donehower, L.A., Bohannon, R.C., Ford, R.J., and Gibbs, R.A. (1990). The use of primers from highly conserved pol regions to identify uncharacterized retroviruses by the polymerase chain reaction. J. Virol. Methods 28, 33-46   DOI   ScienceOn
5 Griffiths, D.J. (2001). Endogenous retroviruses in the human genome sequence. Gen. Biol. 2, 1017.1-1017.5
6 Johnson, W.E., and Coffin, J.M. (1999). Constructing primate phylogenies from ancient retrovirus sequences. Proc. Natl. Acad. Sci. USA 96, 10254-1060
7 Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120   DOI
8 Klymiuk, N., Müller, M., Brem, G., and Aigner, B. (2002). Characterization of porcine endogenous retrovirus gamma pro-pol nucleotide sequences. J. Virol. 76, 11738-11743   DOI
9 Lebedev, Y.B., Belonovitch, O.S., Zybrova, N.V., Khil, P.P., Kurdyukov, S.G., Vinogradova, T.V., Hunsmann, G., and Sverdlov, E.D. (2000). Differences in HERV-K LTR insertions in orthologous loci of humans and great apes. Gene 247, 265-277   DOI   ScienceOn
10 Mager, D.L., Hunter, D.G., Schertzer, M., and Freeman, J.D. (1999). Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). Genomics 59, 255-263   DOI   ScienceOn
11 Ribet, D., Harper, F., Dewannieux, M., Pierron, G., and Heidmann, T. (2007). Murine MusD retrotransposon: structure and molecular evolution of an "intracellularized" retrovirus. J. Virol. 81, 1888-1898   DOI   ScienceOn
12 Tamura, T., Noda, M., and Takano, T. (1981). Structure of the baboon endogenous virus genome: nucleotide sequences of the long terminal repeat. Nucleic Acids Res. 9, 6615-6626   DOI
13 Robert, G., and Michael, T. (2003). The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 26, 291-315   DOI   ScienceOn
14 Tchenio, T., and Heidmann, T. (1991). Defective retroviruses can disperse in the human genome by intracellular transposition. J. Virol. 65, 2113-2118
15 Xiao, R., Kim, J., Choi, H., Park, K., Lee, H., and Park, C. (2008b). Characterization of the bovine endogenous retrovirus beta3 Genome. Mol. Cells 25, 142-147
16 Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599   DOI   ScienceOn
17 Patience, C., Switzer, W.M., Takeuchi, Y., Griffiths, D.J., Goward, M.E., Heneine, W., Stoye, J.P., and Weiss, R.A. (2001). Multiple groups of novel retroviral genomes in pigs and related species. J. Virol. 75, 2771-2775   DOI   ScienceOn
18 Temin, H.M. (1981). Structure, variation and synthesis of retrovirus long terminal repeat. Cell 27, 1-3   DOI   ScienceOn
19 Donahue, P.R., Hoover, E.A., Beltz, G.A., Riedel, N., Hirsch, V.M., Overbaugh, J., and Mullins, J.I. (1988). Strong sequence conservation among horizontally transmissible, minimally pathogenic feline leukemia viruses. J. Virol. 62, 722-731
20 Roca, A.L., Pecon-Slattery, J., and O'Brien, S.J. (2004). Genomically intact endogenous feline leukemia viruses of recent origin. J. Virol. 78, 4370-4375   DOI
21 Shinnick, T.M., Lerner, R.A., and Sutcliffe, J.G. (1981). Nucleotide sequence of Moloney murine leukaemia virus. Nature 293, 543- 548   DOI   ScienceOn
22 Van Regenmortel, M.H., Fauquet, C.M., Bishop, D.H.L., Carsten, E.B., Estes, M.K., Lemon, S.M., Maniloff, J., Mayo, M.A., McGeoch, D.J., Pringle, C.R., et al. (2000). Virus taxonomy: the classification and nomenclature of viruses (San Diego, USA: Academic Press)
23 Dangel, A.W., Baker, B.J., Mendoza, A.R., and Yu, C.Y. (1995). Complement component C4 gene intron 9 as a phylogenetic marker for primates: long terminal repeats of the endogenous retrovirus ERV-K (C4) are a molecular clock of evolution. Immunogenetics 42, 41-52   DOI
24 Belshaw, R., Katzourakis, A., Paces, J., Burt, A., and Tristem, M. (2005). High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol. Biol. Evol. 22, 814-817   DOI   ScienceOn
25 Belshaw, R., Pereira, V., Katzourakis, A., Talbot, G., Paces, J., Burt, A., and Tristem, M. (2004). Long-term reinfection of the human genome by endogenous retroviruses. Proc. Natl. Acad. Sci. USA 101, 4894-4899
26 Swanstrom, R., and Wills, J.W. (1997). Synthesis, assembly, and processing of viral proteins. In Retroviruses, J.M., Coffin, S.H., Hughes, and H.E., Varmus, eds. (Cold Spring Harbor Laboratory, NY, USA: Cold Spring Harbor Laboratory Press), pp. 263-334
27 Xiao, R., Park, K., Lee, H., Kim, J., and Park C. (2008a). Identification and classification of endogenous retroviruses in cattle. J. Virol. 82, 582-587   DOI   ScienceOn
28 Mi, S., Lee, X., Li, X., Veldman, G.M., Finnerty, H., Racie, L., LaVallie, E., Tang, X.Y., Edouard, P., Howes, S., et al. (2000). Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785-789   DOI   ScienceOn
29 Andersson, A.C., Yun, Z., Sperber, G.O., Larsson, E., and Blomberg, J. (2005). ERV3 and related sequences in humans: structure and RNA expression. J. Virol. 79, 9270-9284   DOI   ScienceOn
30 Patience, C., Wilkinson, D.A., and Weiss, R.A. (1997). Our retroviral heritage. Trends GenetK 13, 116-120   DOI   ScienceOn
31 Tonjes, R.R., and Niebert M. (2003). Relative age of proviral porcine endogenous retrovirus sequences in Sus scrofa based on the molecular clock hypothesis. J. Virol. 77, 12363-12368   DOI
32 Baillie, G.J., and Wilkins, R.J. (2001). Endogenous type D retrovirus in a marsupial, the common brushtail possum (Trichosurus vulpecula). J. Virol. 75, 2499-2507   DOI   ScienceOn
33 Delassus, S., Sonigo, P., and Wain-Hobson, S. (1989). Genetic organization of gibbon ape leukemia virus. Virology 173, 205- 213   DOI   ScienceOn
34 Klymiuk, N., Müller, M., Brem, G., and Aigner. B. (2003). Characterization of endogenous retroviruses in sheep. J. Virol. 77, 11268-11273   DOI
35 Mayer, J., and Meese, E.U. (2002). The human endogenous retrovirus family HERV-K (HML-3). Genomics 80, 331-343   DOI   ScienceOn