We propose a measuring method of large object using the pattern matching. It is hard and expensive to get the complete 3D data when the object is large and exceeds the limit of measuring devices. The large object is divided into several smaller areas and is scanned several times to get the data of all the pieces. These data are aligned to get the complete 3D data using the pattern matching method such as point pattern matching method and transform matrix algorithm. The laser slit beam and CCD camera are applied for the experimental measurement. Visual C++ on Windows 98 is implemented in processing the algorithm.
The measuring method of large object using the pattern matching is discussed in the paper. It is hard and expensive to get the complete 3D data when the object is large or exceeds the limit of measuring devices. The large object is divided into several smaller areas and is scanned several times to get the data of all the pieces. These data are aligned to get the complete 3D data using the pattern matching method. The point pattern matching method and transform matrix algorithm are used for aligning. The laser slit beam and CCD camera is applied for experimental measurement. Visual C++ on Window98 is implemented in processing the algorithm.
GIS 분야에서 지도 일반화는 공간자료의 상세도를 결정하여 효과적으로 자료를 가시화(Visualixation)하거나 자료의 해상력을 변화시켜 변환하는 기능을 수행한다. 최근까지 지도 일반화는 선사상 (Line Features)에 집중되었고, 수치지도를 구성하고 있는 정보량과 그 중요성에 비하여 점사상 (Point Features)에 대한 연구는 상대적으로 미미하였다. 이러한 맥락에서 본 연구는 점사상에 대한 구체적인 일반화 방안을 모색하는데 목적을 둔다. 특히 점사상의 일반화에서 원자료의 기하학적 특성을 파악하는데 가장 중요하게 고려한 요소로 점사상의 분포패턴을 선정하였다. 즉 'Grieg-Smith방법'을 활용한 방격분석 (Quadrat Analysis)과 최근린분석 (Nearest-Neighbour Analysis)를 통해 점사상이 갖고 있는 분포패턴의 특성을 찾아낸 다음, 이를 변형시키지 않도록 일반화의 기준거리(Threshold)를 설정하여 점사상을 제거하는 방법을 통해 점사상의 일반화를 시도하였다. 따라서 이 연구에서 제시한 점사상의 일반화 방안은 원래 점사상이 갖고 있는 기하학적 특성을 최대한 유지한다.
This study was designed to propose a method to draft bodice block pattern from 3D body scan data. Subjects were ten elderly women in their 60's, who wear basic size(B: 94cm, W: 82cm) garment. Scanning was done using 3D whole body scanner(WB4, Cyberware). Measurements for 3D data and cross section were attained using Auto CAD, by which a upper bodice pattern for elderly women was drawn on the basis of short measured method. The results are as following: As for most items, no significant differences were shown between measurements from Martin's anthropometry and those from 3D scan data, suggesting measurement from 3D scan data could be used to draft a pattern. The drafting equations acquired were as follows; width of pattern=B/2+5.5, width of waist=W/2+3.5cm, dart amount=8cm. Dart distributions were 23%(B.P.) : 20%(front armpit) : 17%(side seam) : 18%(back armpit) : 15%(back protruded point) : 7% (center back line). Through wearing test using 5-point Likert scale, resultant pattern was evaluated as appropriate for elderly women's pattern to get over 4 point. As a result, it might be said that 3D scanning application is effective for elderly women in that it doesn't take time so much as Martin's anthropometry and that their body shape vary compared with those of young women.
DNA computing-inspired pattern classification based on the hypernetwork model is a novel approach to pattern classification problems. The hypernetwork model has been shown to be a powerful tool for multi-class data analysis. However, the ordinary hypernetwork model has limitations, such as operating sequentially only. In this paper, we propose a efficient implementing method of DNA computing-inspired pattern classifier using GPU. We show simulation results of multi-class pattern classification from hand-written digit data, DNA microarray data and 8 category scene data for performance evaluation. and we also compare of operation time of the proposed DNA computing-inspired pattern classifier on each operating environments such as CPU and GPU. Experiment results show competitive diagnosis results over other conventional machine learning algorithms. We could confirm the proposed DNA computing-inspired pattern classifier, designed on GPU using CUDA platform, which is suitable for multi-class data classification. And its operating speed is fast enough to comply point-of-care diagnostic purpose and real-time scene categorization and hand-written digit data classification.
A vision sensor should be calibrated prior to infer a Euclidian shape reconstruction. A point to point calibration. also referred to as a hard calibration, estimates calibration parameters by means of a set of 3D to 2D point pairs. We proposed a new method for determining a set of 3D to 2D pairs for the structured light hard calibration. It is simply determined based on epipolar geometry between camera image plane and projector plane, and a projector calibrating grid pattern. The projector calibration is divided two stages; world 3D data acquisition Stage and corresponding 2D data acquisition stage. After 3D data points are derived using cross ratio, corresponding 2D point in the projector plane can be determined by the fundamental matrix and horizontal grid ID of a projector calibrating pattern. Euclidian reconstruction can be achieved by linear triangulation. and experimental results from simulation are presented.
In this paper, 3D face recognition system is designed by using polynomial based on RBFNNs. In case of 2D face recognition, the recognition performance reduced by the external environmental factors such as illumination and facial pose. In order to compensate for these shortcomings of 2D face recognition, 3D face recognition. In the preprocessing part, according to the change of each position angle the obtained 3D face image shapes are changed into front image shapes through pose compensation. the depth data of face image shape by using Multiple Point Signature is extracted. Overall face depth information is obtained by using two or more reference points. The direct use of the extracted data an high-dimensional data leads to the deterioration of learning speed as well as recognition performance. We exploit principle component analysis(PCA) algorithm to conduct the dimension reduction of high-dimensional data. Parameter optimization is carried out with the aid of PSO for effective training and recognition. The proposed pattern classifier is experimented with and evaluated by using dataset obtained in IC & CI Lab.
This study was made to draft the tight fitting bodice pattern which horizontal and perpendicular stands are to be lightly set, with the consideration of characteristics of body shape in design of clothes. Measurement of body was conducted on 53 women in twenties, and observation was made on surface development pattern by adhesive tape addition method and gypsum method on three standard objects. In the study, bodice pattern was completed by using already made Somato- measurer, compared with existing bodice pattern, and the results are as follows. The result of the correlation analysis by body measurement shows that chest circumference has a relation to B$.$P-front neck point, side neck point, shoulder point, front interscye breadth point, and the item in spine scapulae point has relation to the item of back neck line, and front & back horizontal values. The degree of shoulder slant, width of armhole and of its depth, the amount of breast, back space, back length were shown to be directly measured from the body. In surface development pattern, tight-fit bodice pattern necessary to the breast volume and back space were shown to be investigated and these volume have to be given in setting up basic line for clothes design together with body measurement value. The result of sensory evaluation for appearance test on fitness shows higher value of research bodice including line of shoulder line, front and back interscye breadth, chest circumference, waist circumference, armhole circumference and of its depth, compared with the research bodice in most items. The result of this study is seen showing high effectiveness for the basic data to design the ready-made dress of high sensitivity of high value added tat.
This study was designed to produce rounded belt pattern and tight-skirt pattern drafting method using 3D body scan data. Subjects were thirty women in their early twenties. In order to figure out the optimum cutting points, namely, where darts are made, using CAD program, curve ratio inflection points on the horizontal curve of waist, abdomen, and hip to find 1 point in the front, two points in the back part. The average length from center front point to maximum curve ratio was 7.7 cm(46.3%) on the waist curve; 7.9 cm(39.4%) on the abdomen curve. And the average length from center back point to maximum curve ratio point was 6.9 cm(39.0%) for first dart and 11.2 cm(63.3%) for second dart on the waist curve; 8.9 cm(35.8%) for first dart and 15.7 cm(63.3%) for second dart on the hip curve respectively. The cutting lines from were made up by connecting curve inflection points. After divided using cutting lines, each patch was flattened onto the plane and all the technical design factors related with patternmaking were measured, such as dart amount, lifting amount of side waist point, etc. Based on the results of correlation analysis among these factors, regression analysis was done to produce equations to estimate the variables necessary to draw up pattern draft method; F1=F8+1.1, $F4=2.5{\times}F2+0.9$, $F5=0.9{\times}F4+1.0$, $F6=0.3{\times}F4+0.4$, $B1=0.9{\times}B8+2.3$, $B4=2.1{\times}B2+1.3$, $B5=0.9{\times}B4+3.5$, and $B6=0.3{\times}B4+0.4$.
사용자중심의 게임분석에 대한 과학적인 접근이 주목 받고 있는 게임개발 환경에서 플레이어에 대한 정확한 정보는 중요한 요소로 작용하고 있다. 본 논문에서는 플레이어의 행동과 게임레벨간의 상호작용이 타 장르에 비해 높은 FPS게임에서 주된 레벨디자인 요소인 Choke Point 유형과 Cover Pattern속성의 관계가 레벨난이도에 어떠한 영향을 주는지 살펴보았다. Choke Point는 목표달성을 위해 반드시 통과해야하는 주요 길목이며, Cover Pattern은 건물을 제외한 레벨상의 물체를 말한다. 두 요소는 레벨 난이도에 직 간접적으로 영향을 준다. 대표적인 10종의 FPS게임플레이를 분석하여 Choke Point유형을 분류하고 4종의 Cover Pattern속성을 배치하여 16개의 실험대상 레벨을 구성하였다. 10명 플레이어의 5회 반복플레이를 통해 800개의 플레이어 행동데이터를 수집, 분석하였다. 이러한 실증적 실험을 통한 분석결과는 게임레벨 디자인 단계에 구체적인 정보를 제공함으로써 체계적인 게임레벨 제작에 기여할 것이며 기존 학술적연구결과가 산업적으로 활용될 수 있는 방법을 제안하고 있어 의의를 갖는다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.