• 제목/요약/키워드: point interpolation

검색결과 343건 처리시간 0.028초

HERMITE INTERPOLATION USING PH CURVES WITH UNDETERMINED JUNCTION POINTS

  • Kong, Jae-Hoon;Jeong, Seung-Pil;Kim, Gwang-Il
    • 대한수학회보
    • /
    • 제49권1호
    • /
    • pp.175-195
    • /
    • 2012
  • Representing planar Pythagorean hodograph (PH) curves by the complex roots of their hodographs, we standardize Farouki's double cubic method to become the undetermined junction point (UJP) method, and then prove the generic existence of solutions for general $C^1$ Hermite interpolation problems. We also extend the UJP method to solve $C^2$ Hermite interpolation problems with multiple PH cubics, and also prove the generic existence of solutions which consist of triple PH cubics with $C^1$ junction points. Further generalizing the UJP method, we go on to solve $C^2$ Hermite interpolation problems using two PH quintics with a $C^1$ junction point, and we also show the possibility of applying the modi e UJP method to $G^2[C^1]$ Hermite interpolation.

G2 Continuity Smooth Path Planning using Cubic Polynomial Interpolation with Membership Function

  • Chang, Seong-Ryong;Huh, Uk-Youl
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.676-687
    • /
    • 2015
  • Path planning algorithms are used to allow mobile robots to avoid obstacles and find ways from a start point to a target point. The general path planning algorithm focused on constructing of collision free path. However, a high continuous path can make smooth and efficiently movements. To improve the continuity of the path, the searched waypoints are connected by the proposed polynomial interpolation. The existing polynomial interpolation methods connect two points. In this paper, point groups are created with three points. The point groups have each polynomial. Polynomials are made by matching the differential values and simple matrix calculation. Membership functions are used to distribute the weight of each polynomial at overlapped sections. As a result, the path has $G^2$ continuity. In addition, the proposed method can analyze path numerically to obtain curvature and heading angle. Moreover, it does not require complex calculation and databases to save the created path.

A local point interpolation method for stress analysis of two-dimensional solids

  • Liu, G.R.;Gu, Y.T.
    • Structural Engineering and Mechanics
    • /
    • 제11권2호
    • /
    • pp.221-236
    • /
    • 2001
  • A local point interpolation method (LPIM) is presented for the stress analysis of two-dimensional solids. A local weak form is developed using the weighted residual method locally in two-dimensional solids. The polynomial interpolation, which is based only on a group of arbitrarily distributed nodes, is used to obtain shape functions. The LPIM equations are derived, based on the local weak form and point interpolation. Since the shape functions possess the Kronecker delta function property, the essential boundary condition can be implemented with ease as in the conventional finite element method (FEM). The presented LPIM method is a truly meshless method, as it does not need any element or mesh for both field interpolation and background integration. The implementation procedure is as simple as strong form formulation methods. The LPIM has been coded in FORTRAN. The validity and efficiency of the present LPIM formulation are demonstrated through example problems. It is found that the present LPIM is very easy to implement, and very robust for obtaining displacements and stresses of desired accuracy in solids.

최소자승법을 이용한 수직다관절 Manipulator의 원호보간에 관한 효과적인 방법 (An Efficient Approach to Circular Curve Fitting of Articulated Manipulators Using Least Squares)

  • 김대영;최은재;정원지;서영교;홍형표
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.570-575
    • /
    • 2002
  • This paper presents a new circular curve fitting approach of articulated manipulators, based on pseudoinverses. The paper aims at gaining the interpolation of circle from n data points, under the condition that the fitted circle should pass both a start point and an end point. In this paper, two algorithms of circular interpolation are presented. Prior to circular interpolation, are a spherical fitting should be performed, using least squares. In the first algorithm, the relationship between point data and normal vector on the sphere is used. In the second algorithm. the equation of plane which can be obtained from 3 points, i.e., a start point, an end point, and center of a sphere. The proposed algorithms are show to be efficient by using MATLAB-based simulation.

  • PDF

INFLUNCE OF THE TOPOGRAPHIC INTERPOLATION METHODS ON HIGH-RESOLUTION WIND FIELD SIMULATION WITH SRTM ELEVATION DATA OVER THE COASTAL AREA

  • Kim, Yoo-Keun;Lo, So-Young;Jeong, Ju-Hee
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.297-300
    • /
    • 2008
  • High-resolution mesoscale meteorological modeling requires more accurate and higher resolution digital elevation model (DEM) data. Shuttle Radar Topographic Mission (SRTM) has created 90 m DEM for entire globe and that is freely available for meteorological modeling and environmental applications. In this research, the effects of the topographic interpolation methods on high-resolution wind field simulation in the coastal regions were quantitatively analyzed using Weather Research and Forecasting (WRF) model with SRTM data. Sensitivity experiments with three different interpolation schemes (four-point bilinear, sixteen-point overlapping parabolic and nearest neighbor interpolation methods) were preformed using SRTM. In WRF modeling with sixteen-point overlapping parabolic interpolation, the coastal line and some small islands show more clearly than other cases. The maximum height of inland is around 140 meters higher, while the minimum of sea height is about 80 meter lower. As it concerns the results of each scheme it seems that the sixteen-point overlapping parabolic scheme indicates the well agreement with observed surface wind data. Consequently, topographic changes due to interpolation methods can lead to the significant influence on mesoscale wind field simulation of WRF modeling.

  • PDF

액상확산접합용 인서트금속의 화학조성 최적화에 관한 연구 (A Study on the Optimum Chemical Composition of Insert Metal for Liquid Phase Diffuse Bonding)

  • 김대업;정승부;강정윤
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.90-97
    • /
    • 2000
  • Effect of alloy elements on joinability of insert metal for liquid phase diffusion bonding of heat resistant alloys was investigated in this study. Also, optimum chemical composition of insert metal was explained using interpolation method. The insert metals utilized was commercial Ni-base amorphous foils and newly developed Ni-base filler metals with B, Si and Cr in this study. Melting point and critical interlayer width(CIW) decreased with increasing additional amount of B, Si and Cr, melting point lowering element of the insert metal. Optimized chemical composition of insert metals could be estimated by interpolation method. The optimum amount of B, Si, Cr addition into the insert metal were found to be about 3%, 4% and 3%, respectively. The measured characteristic values, melting point, microhardness in the bonded interlayer and CIW of the insert metals were the almost identical to ones of the calculated results by interpolation method.

  • PDF

Point interpolation method based on local residual formulation using radial basis functions

  • Liu, G.R.;Yan, L.;Wang, J.G.;Gu, Y.T.
    • Structural Engineering and Mechanics
    • /
    • 제14권6호
    • /
    • pp.713-732
    • /
    • 2002
  • A local radial point interpolation method (LRPIM) based on local residual formulation is presented and applied to solid mechanics in this paper. In LRPIM, the trial function is constructed by the radial point interpolation method (PIM) and establishes discrete equations through a local residual formulation, which can be carried out nodes by nodes. Therefore, element connectivity for trial function and background mesh for integration is not necessary. Radial PIM is used for interpolation so that singularity in polynomial PIM may be avoided. Essential boundary conditions can be imposed by a straightforward and effective manner due to its Delta properties. Moreover, the approximation quality of the radial PIM is evaluated by the surface fitting of given functions. Numerical performance for this LRPIM method is further studied through several numerical examples of solid mechanics.

매개변수를 이용한 $Labview^{(R)}$ 기반의 3축 SCARA로봇의 이종모션 제어 알고리즘 (Hybrid Motion Blending Algorithm of 3-Axis SCARA Robot based on $Labview^{(R)}$ using Parametric Interpolation)

  • 정원지;주지훈;이기상
    • 한국공작기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.154-161
    • /
    • 2009
  • In order to implement continuous-path motion on a robot, it is necessary to blend one joint motion to another joint motion near a via point in a trapezoidal form of joint velocity. First, the velocity superposition using parametric interpolation is proposed. Hybrid motion blending is defined as the blending of different two type's motions such as blending of joint motion with linear motion, in the neighborhood of a via point. Second, hybrid motion blending algorithm is proposed based on velocity superposition using parametric interpolation. By using a 3-axis SCARA (Selective Compliance Assembly Robot Arm) robot with $LabVIEW^{(R)}$ $controller^{(1)}$, the velocity superposition algorithm using parametric interpolation is shown to result in less vibration, compared with PTP(Point- To-Point) motion and Kim's algorithm. Moreover, the hybrid motion $algorithm^{(2)}$ is implemented on the robot using $LabVIEW^{(R)(1)}$ programming, which is confirmed by showing the end-effector path of joint-linear hybrid motion.

지역 자료의 공간 단위 재구성 기법 및 에러 검증 : 인구가중치 내삽법 (Research on Areal Interpolation Methods and Error Measurement Techniques for Reorganizing Incompatible Regional Data Units : The Population Weighted Interpolation)

  • 신정엽
    • 한국지역지리학회지
    • /
    • 제10권2호
    • /
    • pp.389-406
    • /
    • 2004
  • 최근 지역 연구의 활성화와 더불어 지역 자료의 중요성이 점점 강조되고 있다. 그런데 실제 이용가능한 지역 자료의 공간단위는 연구 분석을 위한 기능지역 단위와 일치하지 않는 경우가 종종 발생하며, 이로 인해 발생하는 문제를 해결하기 위해 이용가능한 지역 단위 자료를 연구 분석을 위한 공간 단위로 재구성하는 방법이 요구된다. 본 연구는 면적 가중치 내삽법, pycnophylactic 방법, dasymetric 방법, Area-to-point 내삽법 등을 검토하고 도시지역 자료의 효율적인 재구성 방법으로 면적 가중치 내삽법을 수정하여 인구 가중치 내삽법(population weighted interpolation)을 제안하였다. 인구 가중치 내삽법은 미국 뉴욕주 이리 카운티(Erie County)를 연구 사례로 면적 가중치 방법 pycnophylactic 방법을 RMS 에러, 자료 분포 유형, 공간 자기상관의 측면에서 비교되었다.

  • PDF