• Title/Summary/Keyword: point dataset

Search Result 195, Processing Time 0.022 seconds

Hybrid Model Based Intruder Detection System to Prevent Users from Cyber Attacks

  • Singh, Devendra Kumar;Shrivastava, Manish
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.272-276
    • /
    • 2021
  • Presently, Online / Offline Users are facing cyber attacks every day. These cyber attacks affect user's performance, resources and various daily activities. Due to this critical situation, attention must be given to prevent such users through cyber attacks. The objective of this research paper is to improve the IDS systems by using machine learning approach to develop a hybrid model which controls the cyber attacks. This Hybrid model uses the available KDD 1999 intrusion detection dataset. In first step, Hybrid Model performs feature optimization by reducing the unimportant features of the dataset through decision tree, support vector machine, genetic algorithm, particle swarm optimization and principal component analysis techniques. In second step, Hybrid Model will find out the minimum number of features to point out accurate detection of cyber attacks. This hybrid model was developed by using machine learning algorithms like PSO, GA and ELM, which trained the system with available data to perform the predictions. The Hybrid Model had an accuracy of 99.94%, which states that it may be highly useful to prevent the users from cyber attacks.

Compressive sensing-based two-dimensional scattering-center extraction for incomplete RCS data

  • Bae, Ji-Hoon;Kim, Kyung-Tae
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.815-826
    • /
    • 2020
  • We propose a two-dimensional (2D) scattering-center-extraction (SCE) method using sparse recovery based on the compressive-sensing theory, even with data missing from the received radar cross-section (RCS) dataset. First, using the proposed method, we generate a 2D grid via adaptive discretization that has a considerably smaller size than a fully sampled fine grid. Subsequently, the coarse estimation of 2D scattering centers is performed using both the method of iteratively reweighted least square and a general peak-finding algorithm. Finally, the fine estimation of 2D scattering centers is performed using the orthogonal matching pursuit (OMP) procedure from an adaptively sampled Fourier dictionary. The measured RCS data, as well as simulation data using the point-scatterer model, are used to evaluate the 2D SCE accuracy of the proposed method. The results indicate that the proposed method can achieve higher SCE accuracy for an incomplete RCS dataset with missing data than that achieved by the conventional OMP, basis pursuit, smoothed L0, and existing discrete spectral estimation techniques.

Density-based Outlier Detection in Multi-dimensional Datasets

  • Wang, Xite;Cao, Zhixin;Zhan, Rongjuan;Bai, Mei;Ma, Qian;Li, Guanyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3815-3835
    • /
    • 2022
  • Density-based outlier detection is one of the hot issues in data mining. A point is determined as outlier on basis of the density of points near them. The existing density-based detection algorithms have high time complexity, in order to reduce the time complexity, a new outlier detection algorithm DODMD (Density-based Outlier Detection in Multidimensional Datasets) is proposed. Firstly, on the basis of ZH-tree, the concept of micro-cluster is introduced. Each leaf node is regarded as a micro-cluster, and the micro-cluster is calculated to achieve the purpose of batch filtering. In order to obtain n sets of approximate outliers quickly, a greedy method is used to calculate the boundary of LOF and mark the minimum value as LOFmin. Secondly, the outliers can filtered out by LOFmin, the real outliers are calculated, and then the result set is updated to make the boundary closer. Finally, the accuracy and efficiency of DODMD algorithm are verified on real dataset and synthetic dataset respectively.

Novelty Detection on Web-server Log Dataset (웹서버 로그 데이터의 이상상태 탐지 기법)

  • Lee, Hwaseong;Kim, Ki Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1311-1319
    • /
    • 2019
  • Currently, the web environment is a commonly used area for sharing information and conducting business. It is becoming an attack point for external hacking targeting on personal information leakage or system failure. Conventional signature-based detection is used in cyber threat but signature-based detection has a limitation that it is difficult to detect the pattern when it is changed like polymorphism. In particular, injection attack is known to the most critical security risks based on web vulnerabilities and various variants are possible at any time. In this paper, we propose a novelty detection technique to detect abnormal state that deviates from the normal state on web-server log dataset(WSLD). The proposed method is a machine learning-based technique to detect a minor anomalous data that tends to be different from a large number of normal data after replacing strings in web-server log dataset with vectors using machine learning-based embedding algorithm.

Construction of a Spatio-Temporal Dataset for Deep Learning-Based Precipitation Nowcasting

  • Kim, Wonsu;Jang, Dongmin;Park, Sung Won;Yang, MyungSeok
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.135-142
    • /
    • 2022
  • Recently, with the development of data processing technology and the increase of computational power, methods to solving social problems using Artificial Intelligence (AI) are in the spotlight, and AI technologies are replacing and supplementing existing traditional methods in various fields. Meanwhile in Korea, heavy rain is one of the representative factors of natural disasters that cause enormous economic damage and casualties every year. Accurate prediction of heavy rainfall over the Korean peninsula is very difficult due to its geographical features, located between the Eurasian continent and the Pacific Ocean at mid-latitude, and the influence of the summer monsoon. In order to deal with such problems, the Korea Meteorological Administration operates various state-of-the-art observation equipment and a newly developed global atmospheric model system. Nevertheless, for precipitation nowcasting, the use of a separate system based on the extrapolation method is required due to the intrinsic characteristics associated with the operation of numerical weather prediction models. The predictability of existing precipitation nowcasting is reliable in the early stage of forecasting but decreases sharply as forecast lead time increases. At this point, AI technologies to deal with spatio-temporal features of data are expected to greatly contribute to overcoming the limitations of existing precipitation nowcasting systems. Thus, in this project the dataset required to develop, train, and verify deep learning-based precipitation nowcasting models has been constructed in a regularized form. The dataset not only provides various variables obtained from multiple sources, but also coincides with each other in spatio-temporal specifications.

Apple detection dataset with visibility and deep learning detection using adaptive heatmap regression (가시성을 표시한 사과 검출 데이터셋과 적응형 히트맵 회귀를 이용한 딥러닝 검출)

  • Tae-Woong Yoo;Dasom Seo;Minwoo Kim;Seul Ki Lee;Il-Seok, Oh
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.19-28
    • /
    • 2023
  • In the fruit harvesting field, interest in automatic robot harvesting is increasing due to various seasonality and rising harvesting costs. Accurate apple detection is a difficult problem in complex orchard environments with changes in light, vibrations caused by wind, and occlusion of leaves and branches. In this paper, we introduce a dataset and an adaptive heatmap regression model that are advantageous for robot automatic apple harvesting. The apple dataset was labeled with not only the apple location but also the visibility. We propose a method to detect the center point of an apple using an adaptive heatmap regression model that adjusts the Gaussian shape according to visibility. The experimental results showed that the performance of the proposed method was applicable to apple harvesting robots, with MAP@K of 0.9809 and 0.9801 when K=5 and K=10, respectively.

An Integrated Approach Using Change-Point Detection and Artificial neural Networks for Interest Rates Forecasting

  • Oh, Kyong-Joo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.235-241
    • /
    • 2000
  • This article suggests integrated neural network models for the interest rate forecasting using change point detection. The basic concept of proposed model is to obtain intervals divided by change point, to identify them as change-point groups, and to involve them in interest rate forecasting. the proposed models consist of three stages. The first stage is to detect successive change points in interest rate dataset. The second stage is to forecast change-point group with data mining classifiers. The final stage is to forecast the desired output with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. This article is then to examine the predictability of integrated neural network models for interest rate forecasting using change-point detection.

  • PDF

QSPR model for the boiling point of diverse organic compounds with applicability domain (다양한 유기화합물의 비등점 예측을 위한 QSPR 모델 및 이의 적용구역)

  • Shin, Seong Eun;Cha, Ji Young;Kim, Kwang-Yon;No, Kyoung Tai
    • Analytical Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.270-277
    • /
    • 2015
  • Boiling point (BP) is one of the most fundamental physicochemical properties of organic compounds to characterize and identify the thermal characteristics of target compounds. Previously developed QSPR equations, however, still had some limitation for the specific compounds, like high-energy molecules, mainly because of the lack of experimental data and less coverage. A large BP dataset of 5,923 solid organic compounds was finally secured in this study, after dedicated pre-filtration of experimental data from different sources, mostly consisting of compounds not only from common organic molecules but also from some specially used molecules, and those dataset was used to build the new BP prediction model. Various machine learning methods were performed for newly collected data based on meaningful 2D descriptor set. Results of combined check showed acceptable validity and robustness of our models, and consensus approaches of each model were also performed. Applicability domain of BP prediction model was shown based on descriptor of training set.

Using Structural Changes to support the Neural Networks based on Data Mining Classifiers: Application to the U.S. Treasury bill rates

  • Oh, Kyong-Joo
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.57-72
    • /
    • 2003
  • This article provides integrated neural network models for the interest rate forecasting using change-point detection. The model is composed of three phases. The first phase is to detect successive structural changes in interest rate dataset. The second phase is to forecast change-point group with data mining classifiers. The final phase is to forecast the interest rate with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the predictability of integrated neural network models to represent the structural change.

  • PDF

Using Classification function to integrate Discriminant Analysis, Logistic Regression and Backpropagation Neural Networks for Interest Rates Forecasting

  • Oh, Kyong-Joo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.417-426
    • /
    • 2000
  • This study suggests integrated neural network models for Interest rate forecasting using change-point detection, classifiers, and classification functions based on structural change. The proposed model is composed of three phases with tee-staged learning. The first phase is to detect successive and appropriate structural changes in interest rare dataset. The second phase is to forecast change-point group with classifiers (discriminant analysis, logistic regression, and backpropagation neural networks) and their. combined classification functions. The fecal phase is to forecast the interest rate with backpropagation neural networks. We propose some classification functions to overcome the problems of two-staged learning that cannot measure the performance of the first learning. Subsequently, we compare the structured models with a neural network model alone and, in addition, determine which of classifiers and classification functions can perform better. This article then examines the predictability of the proposed classification functions for interest rate forecasting using structural change.

  • PDF