많은 학자들은 자료의 특성을 분석함으로써 장래를 예측하고자 끊임없이 노력하여 왔으며, 이는 아마도 확정론적 방법과 추계학적 방법으로 크게 대별할 수 있을 것이다. 그러나 예측을 하기 전에 먼저 자료의 특성을 파악하는 것은 모형 구축과 예측을 실행하는데 있어서 매우 중요하다 할 수 있다. 이러한 견지에서 최근 확정론적 방법으로 알려진 비선형 동역학적인 방법이 여러 분야에서 관심의 대상이 되고 있다. 본 연구에서는 비선형 동역학 시스템을 해석하기 위하여 Poincare에 의해 제안된 기하학적 방법을 이용하여 기존에 알려진 자료들과 실제 수문자료에 대한 특성을 비교 분석하였으며 자료의 특성에 따른 예측가능성을 판정하였다. 즉, Poincare section을 통해 Poincare map을 구축함으로써 자료의 특성을 파악하여 자료의 선형, 비선형성 뿐만 아니라 자료가 어떤 모형에 적합한지를 판단할 수 있었다.
본 연구에서는 2자유도 Hamiltonian 운동계에서 비선형 정규모우드(normal mode)들의 안정성을 예측하기 위한 제3의 운동상수를 선형계의 진동수비가 1:1이고 포텐셜이 4차항까지 우함수인 일반계에 적용하여 발전시켰다. 이는 Hamiltonian을 정규모우드로 바꾸는 B-G변환과 함수들을 부호처리함과 Poincare map을 이용하다. 비선형계에서 비선형상수에 따라 모우드가 bifurcate되며, 각각의 모우드 안정성은 제3의 운동상수와 Poincare map으로 정확히 판정할 수 있다는 결론을 얻었다.
6승의 비선형 항을 가지는 두개의 질량으로 구성된 비선형 해밀톤계에 대해서, 비선형 정규모드인 주기운동의 존재성, 분기현상 및 궤도 안정성을 연구하였다. 운동방정식의 직접적분을 통해 4차원 위상공간에서의 운동궤적을 2차원 면으로 투영하는 푸앙카레 사상을 구하였고, 또한 버크 호프-구스타프슨 표준 변환을 통해 구한 운동적분을 이용하여 에너지가 작을때 푸앙카레 사상에 나타나는 불변 곡선들의 해석적인 표현을 유도하였다. 본 논문에서 연구한 진동계는 비선형 계수의 값에 따라 2개 또는 4개의 비선형 정규모드를 가짐이 밝혀졌다. 푸앙카레 사상은, 분기된 모드는 안정하고, 원래의 모드는 안정한 상태에서 불안정한 상태로 변한다는 것을 분명하게 보여주었다.
This research concentrates on the influence of non-linearities associated with impact for the nonlinear rocking behavior of rigid block subjected to one dimensional sinusoidal excitation of horizontal direction. The transition of two governing rocking equations, the abrupt reduction in the kinetic energy associated with impact, and sliding motion of block. In this study, two type of rocking vibration system are considered. One is the undamped rocking vibration system, disregarding energy dissipation at impact and the other is the damped rocking system, including energy dissipation and sliding motion. The response analysis using non-dimensional rocking equation is carried out for the change of excitation parameters and friction coefficient. The chaos responses were discovered in the wide response region, particularly, for the case of high excitation amplitude and their chaos characteristics were examined by the time history, Poincare map, power spectra and Lyapunov Exponent of rocking responses. The complex behavior of chaos response, in the phase space, were illustrated by Poincare map. The bifurcation diagram and Poincare map were shown to be effective in order to understand chaos of rocking system.
Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6$\^$th/ order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhoff-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.
A procedure is formulated, in this paper, to compute the bifurcation modes born by the stability change of normal modes, and to compute the forced responses associated with bifurcation modes in inertially and elastically coupled nonlinear oscillators. It is assumed that a saddle-loop is formed in Poincare map at the stability chage of normal modes. In order to test the validity of procedure, it is applied to one-to-one internal resonant systems in which the solutions are guaranteed within the order of a small perturbation parameter. The procedure is also applied to the exact system in which normal modes are written in exact form and the stability of normal modes can be exactly determined. In this system the stability change of normal modes occurs several times so that various types of bifurcation modes are created. A method is described to identify a fixed point on Poincare map as one of bifurcation modes. The limitations and advantage of proposed procedure are discussed.
랜덤하중 하에서의 구분적선형시스템이 갖는 노이즈의 영향으로 인해 그 특성이 많이 감소되거나 소멸된 응답거동으로부터 chaos거동을 검출하는 방법을 개발, 분석하였다. 해양에서 구조물이 받는 파력은 결정론적이 아닌 추계론적이다. 바람, 파도 그리고 조류 등에 의한 파력은 유한도의 랜던성을 갖으며, 이러한 파력은 지배적인 조화가진하중과 정규 백색노이즈를 더함으로써 표현할 수 있다. 외적 동요를 받는 시스템의 응답거동은 그 거동이 방해를 받으며, 이로 인해 chaos응답거동을 확인하기가 어려우며, 그 거동의 특성이 일반적인 랜덤거동과 다를 바가 없다. 이러한 경우, 평균 포인케어맵을 이용하여 랜덤노이즈에 의해 발견되지 않는 chaos응답거동을 식별할 수 있다. 본 연구에서는 직접수치시뮬레이션상에서 이러한 평균 포인케어맵을 만드는 방법을 개발하였으며, 얻어진 평균 포인케어맵의 적용범위에 대하여 분석하였다. 평균 포인케어맵은 노이즈가 포함된 조화가진하중을 받는 시스템의 chaos응답거동을 확인하는데 있어서 노이즈의 강도가 높을 때 일반적인 포인케어맵만으로는 놓칠 수 있는 chaos응답거동을 성공적으로 확인할 수 있음을 알아내었다. 또한 시스템의 응답거동에서 chaos의 특성이 완전히 사라지는 노이즈의 강도를 얻을 수 있음도 알아내었다.
본 논문에서는 수 변전 설비의 열화진단을 위해서 열화상 카메라로 측정한 온도에 대한 시계열 데이터를 이용하여 포엔카레 맵과 프랙탈 차원에 의한 패턴 변화에 따른 온도 변화 특성을 살펴보았다. 시뮬레이션 결과 포엔카레 맵과 상관 차원에서 비선형적인 특성 거동을 확인할 수 있었다. 앞으로 추가적인 연구를 통한 검증 방법이 요구된다.
In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower force are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant and periodic follower forces are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, phase portraits, and Poincare maps, etc.. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, and viscous damping, etc. is analysed. The strange attractors in Poincare map have the self-similar fractal geometry. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.
본 논문에서는 방향 패턴 레이블링을 이용하여 지문 영상의 중심점을 검출하는 방법을 제안하였다. 중심점은 지문영상에서의 특이점들 중의 하나이며 대부분의 지문 인식 시스템에서 기준점으로 사용되고 있다. 중심점의 검출은 지문 인식 시스템에서 반드시 수행되어야할 중요한 단계로 전체 시스템의 성능에 큰 영향을 준다. 제안된 방법에서는 ridge의 분포로부터 얻어낸 방향 성분에 레이블링 방법과 중심점의 위치를 결정하는 알고리즘을 적용하여 중심점의 위치를 검출할 수 있었다. 모의 실험 결과 제안한 방법이 Poincare index와 Sine map 방법들에 비해 수행시간과 검출률 모두에서 좀더 나은 성능을 보임을 확인하였다. 특히 제안한 방법은 arch 형의 중심점 검출에 있어 Poincare index 방법의 낮은 검출률과 Sine map 방법의 긴 수행 시간이라는 단점들을 모두 극복하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.