• Title/Summary/Keyword: pluripotent stem cells

Search Result 176, Processing Time 0.025 seconds

Limited in vitro differentiation of porcine induced pluripotent stem cells into endothelial cells

  • In-Won Lee;Hyeon-Geun Lee;Dae-Ky Moon;Yeon-Ji Lee;Bo-Gyeong Seo;Sang-Ki Baek;Tae-Suk Kim;Cheol Hwangbo;Joon-Hee Lee
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.109-120
    • /
    • 2023
  • Background: Pluripotent stem cells (PSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer the immense therapeutic potential in stem cell-based therapy of degenerative disorders. However, clinical trials of human ESCs cause heavy ethical concerns. With the derivation of iPSCs established by reprogramming from adult somatic cells through the transgenic expression of transcription factors, this problems would be able to overcome. In the present study, we tried to differentiate porcine iPSCs (piPSCs) into endothelial cells (ECs) for stem cell-based therapy of vascular diseases. Methods: piPSCs (OSKMNL) were induced to differentiation into ECs in four differentiation media (APEL-2, APEL-2 + 50 ng/mL of VEGF, EBM-2, EBM-2 + 50 ng/mL of VEGF) on cultured plates coated with matrigel® (1:40 dilution with DMEM/F-12 medium) for 8 days. Differentiation efficiency of these cells were exanimated using qRT-PCR, Immunocytochemistry, Western blotting and FACS. Results: As results, expressions of pluripotency-associated markers (OCT-3/4, SOX2 and NANOG) were higher observed in all porcine differentiated cells derived from piPSCs (OSKMNL) cultured in four differentiation media than piPSCs as the control, whereas endothelial-associated marker (CD-31) in the differentiated cells was not expressed. Conclusions: It can be seen that piPSCs (OSKMNL) were not suitable to differentiate into ECs in the four differentiation media unlike porcine epiblast stem cells (pEpiSCs). Therefore, it would be required to establish a suitable PSCs for differentiating into ECs for the treatment of cardiovascular diseases.

Motor Neuron Disease and Stem Cell Approach for Its Remediation

  • Kim, Jong Deog;Bhardwaj, Jyoti;Chaudhary, Narendra;Seo, Hyo Jin
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.269-274
    • /
    • 2013
  • Motor neuron disease (MND) is a fatal neurodegenerative disorder caused by progressive and selective degeneration of motor neurons (MNs). Because of the versatile nature, stem cells have the potential to repair or replace the degenerated cells. In this review, we discussed stem cell based therapies including the use of embryonic stem cells (ESCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs) and genetically engineered cells to produce the neurotrophic factors for the treatment of MND. To achieve this goal, the knowledge of specificity of the cell target, homing and special markers are required.

Stem Cells in Drug Screening for Neurodegenerative Disease

  • Kim, Hyun-Jung;Jin, Chang-Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Because the average human life span has recently increased, the number of patients who are diagnosed with neurodegenerative diseases has escalated. Recent advances in stem cell research have given us access to unlimited numbers of multi-potent or pluripotent cells for screening for new drugs for neurodegenerative diseases. Neural stem cells (NSCs) are a good model with which to screen effective drugs that increase neurogenesis. Recent technologies for human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) can provide human cells that harbour specific neurodegenerative disease. This article discusses the use of NSCs, ESCs and iPSCs for neurodegenerative drug screening and toxicity evaluation. In addition, we introduce drugs or natural products that are recently identified to affect the stem cell fate to generate neurons or glia.

iPSC-Derived Natural Killer Cells for Cancer Immunotherapy

  • Karagiannis, Peter;Kim, Shin-Il
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.541-548
    • /
    • 2021
  • The discovery of human pluripotent stem cells (PSCs) at the turn of the century opened the door to a new generation of regenerative medicine research. Among PSCs, the donors available for induced pluripotent stem cells (iPSCs) are greatest, providing a potentially universal cell source for all types of cell therapies including cancer immunotherapies using natural killer (NK cells). Unlike primary NK cells, those prepared from iPSCs can be prepared with a homogeneous quality and are easily modified to exert a desired response to tumor cells. There already exist several protocols to genetically modify and differentiate iPSCs into NK cells, and each has its own advantages with regards to immunotherapies. In this short review, we detail the benefits of using iPSCs in NK cell immunotherapies and discuss the challenges that must be overcome before this approach becomes mainstream in the clinic.

Human Pluripotent Stem Cell-Derived Retinal Organoids: A Viable Platform for Investigating the Efficacy of Adeno-Associated Virus Gene Therapy

  • Hyeon-Jin Na;Jae-Eun Kwon;Seung-Hyun Kim;Jiwon Ahn;Ok-Seon Kwon;Kyung-Sook Chung
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.204-211
    • /
    • 2024
  • With recent advances in adeno-associated virus (AAV)-based gene therapy, efficacy and toxicity screening have become essential for developing gene therapeutic drugs for retinal diseases. Retinal organoids from human pluripotent stem cells (hPSCs) offer a more accessible and reproducible human test platform for evaluating AAV-based gene therapy. In this study, hPSCs were differentiated into retinal organoids composed of various types of retinal cells. The transduction efficiencies of AAV2 and AAV8, which are widely used in clinical trials of inherited retinal diseases, were analyzed using retinal organoids. These results suggest that retinal organoids derived from hPSCs serve as suitable screening platforms owing to their diverse retinal cell types and similarity to the human retina. In summary, we propose an optimal stepwise protocol that includes the generation of retinal organoids and analysis of AAV transduction efficacy, providing a comprehensive approach for evaluating AAV-based gene therapy for retinal diseases.

High sensitivity of embryonic stem cells to proteasome inhibitors correlates with low expression of heat shock protein and decrease of pluripotent cell marker expression

  • Park, Jeong-A;Kim, Young-Eun;Ha, Yang-Hwa;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • v.45 no.5
    • /
    • pp.299-304
    • /
    • 2012
  • The ubiquitin-proteasome system is a major proteolytic system for nonlysosomal degradation of cellular proteins. Here, we investigated the response of mouse embryonic stem (ES) cells under proteotoxic stress. Proteasome inhibitors induced expression of heat shock protein 70 (HSP70) in a concentration- and time-dependent manner, and also induced apoptosis of ES cells. Importantly, more apoptotic cells were observed in ES cells compared with other somatic cells. To understand this phenomenon, we further investigated the expression of HSP70 and pluripotent cell markers. HSP70 expression was more significantly increased in somatic cells than in ES cells, and expression levels of pluripotent cell markers such as Oct4 and Nanog were decreased in ES cells. These results suggest that higher sensitivity of ES cells to proteotoxic stress may be related with lower capacity of HSP70 expression and decreased pluripotent cell marker expression, which is essential for the survival of ES cells.

Single cell heterogeneity in human pluripotent stem cells

  • Yang, Seungbok;Cho, Yoonjae;Jang, Jiwon
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.505-515
    • /
    • 2021
  • Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation.

Disease-specific pluripotent stem cells

  • Kang, Hoon-Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.8
    • /
    • pp.786-789
    • /
    • 2010
  • Induced pluripotent stem (iPS) cells are generated by epigenetic reprogramming of somatic cells through the exogenous expression of transcription factors. Recently, the generation of iPS cells from patients with a variety of genetic diseases was found to likely have a major impact on regenerative medicine, because these cells self-renew indefinitely in culture while retaining the capacity to differentiate into any cell type in the body, thereby enabling disease investigation and drug development. This review focuses on the current state of iPS cell technology and discusses the potential applications of these cells for disease modeling; drug discovery; and eventually, cell replacement therapy.

Stem cells and reproduction

  • Lee, Yeonmi;Kang, Eunju
    • BMB Reports
    • /
    • v.52 no.8
    • /
    • pp.482-489
    • /
    • 2019
  • Reproductive biotechnology has developed rapidly and is now able to overcome many birth difficulties due to infertility or the transmission of genetic diseases. Here we introduce the next generation of assisted reproductive technologies (ART), such as mitochondrial replacement technique (MRT) or genetic correction in eggs with micromanipulation. Further, we suggest that the transmission of genetic information from somatic cells to subsequent generations without gametes should be useful for people who suffer from infertility or genetic diseases. Pluripotent stem cells (PSCs) can be converted into germ cells such as sperm or oocytes in the laboratory. Notably, germ cells derived from nuclear transfer embryonic stem cells (NT-ESCs) or induced pluripotent stem cells (iPSCs) inherit the full parental genome. The most important issue in this technique is the generation of a haploid chromosome from diploid somatic cells. We hereby examine current science and limitations underpinning these important developments and provide recommendations for moving forward.

In vitro culture of chicken embryonic stem cell-like cells

  • Bo Ram Lee;Hyeon Yang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.26-31
    • /
    • 2023
  • Chicken embryonic stem (ES) cells have great potential and provide a powerful tool to investigate embryonic development and to manipulate genetic modification in a genome. However, very limited studies are available on the functional characterization and robust expansion of chicken ES cells compared to other species. Here, we have developed a method to generate chicken embryonic stem cell-like cells under pluripotent culture conditions. The chicken embryonic stem cell-like cells were cultivated long-term over several passages of culture without loss of pluripotency in vitro and had the specific expression of key stem cell markers. Furthermore, they showed severe changes in morphology and a significant reduction in pluripotent genes after siRNA-mediated NANOG knockdown. Collectively, these results demonstrate the efficient generation of chicken embryonic stem cell-like cells from EGK stage X blastoderm-derived singularized cells and will facilitate their potential use for various purposes, such as biobanking genetic materials and understanding stemness in the fields of animal biotechnology.