Browse > Article
http://dx.doi.org/10.5483/BMBRep.2019.52.8.141

Stem cells and reproduction  

Lee, Yeonmi (Department of Convergence Medicine & Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine)
Kang, Eunju (Department of Convergence Medicine & Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine)
Publication Information
BMB Reports / v.52, no.8, 2019 , pp. 482-489 More about this Journal
Abstract
Reproductive biotechnology has developed rapidly and is now able to overcome many birth difficulties due to infertility or the transmission of genetic diseases. Here we introduce the next generation of assisted reproductive technologies (ART), such as mitochondrial replacement technique (MRT) or genetic correction in eggs with micromanipulation. Further, we suggest that the transmission of genetic information from somatic cells to subsequent generations without gametes should be useful for people who suffer from infertility or genetic diseases. Pluripotent stem cells (PSCs) can be converted into germ cells such as sperm or oocytes in the laboratory. Notably, germ cells derived from nuclear transfer embryonic stem cells (NT-ESCs) or induced pluripotent stem cells (iPSCs) inherit the full parental genome. The most important issue in this technique is the generation of a haploid chromosome from diploid somatic cells. We hereby examine current science and limitations underpinning these important developments and provide recommendations for moving forward.
Keywords
Artificial oocyte; Artificial sperm; Programming; Reproduction; Stem cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ford CE, Evans EP, Burtenshaw MD, Clegg HM, Tuffrey M and Barnes RD (1975) A functional 'sex-reversed' oocyte in the mouse. Proc R Soc Lond B Biol Sci 190, 187-197   DOI
2 Hubner K, Fuhrmann G, Christenson LK et al (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251-1256   DOI
3 Qing T, Shi Y, Qin H et al (2007) Induction of oocyte-like cells from mouse embryonic stem cells by co-culture with ovarian granulosa cells. Differentiation 75, 902-911   DOI
4 Taketo T (2015) The role of sex chromosomes in mammalian germ cell differentiation: Can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes? Asian J Androl 17, 360-366   DOI
5 Tsai MC, Takeuchi T, Bedford JM, Reis MM, Rosenwaks Z and Palermo GD (2000) Alternative sources of gametes: Reality or science fiction? Hum Reprod 15, 988-998   DOI
6 Fulka J Jr, Martinez F, Tepla O, Mrazek M and Tesarik J (2002) Somatic and embryonic cell nucleus transfer into intact and enucleated immature mouse oocytes. Hum Reprod 17, 2160-2164   DOI
7 Tesarik J, Nagy ZP, Sousa M, Mendoza C and Abdelmassih R (2001) Fertilizable oocytes reconstructed from patient's somatic cell nuclei and donor ooplasts. Reprod Biomed Online 2, 160-164   DOI
8 Halley-Stott RP and Gurdon JB (2013) Epigenetic memory in the context of nuclear reprogramming and cancer. Brief Funct Genomics 12, 164-173   DOI
9 Maherali N, Sridharan R, Xie W et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55-70   DOI
10 Verhaak CM, Smeenk JM, Evers AW, Kremer JA, Kraaimaat FW and Braat DD (2007) Women's emotional adjustment to IVF: A systematic review of 25 years of research. Hum Reprod Update 13, 27-36   DOI
11 Sherrod RA (2004) Understanding the emotional aspects of infertility: Implications for nursing practice. J Psychosoc Nurs Ment Health Serv 42, 40-47   DOI
12 Boulet SL, Mehta A, Kissin DM, Warner L, Kawwass JF and Jamieson DJ (2015) Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection. JAMA 313, 255-263   DOI
13 Maleki-Saghooni N, Amirian M, Sadeghi R and Latifnejad Roudsari R (2017) Effectiveness of infertility counseling on pregnancy rate in infertile patients undergoing assisted reproductive technologies: A systematic review and meta-analysis. Int J Reprod Biomed (Yazd) 15, 391-402   DOI
14 Palermo G, Joris H, Devroey P and Van Steirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340, 17-18   DOI
15 Yamashiro C, Sasaki K, Yabuta Y et al (2018) Generation of human oogonia from induced pluripotent stem cells in vitro. Science 362, 356-360   DOI
16 Jung D, Xiong J, Ye M et al (2017) In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat Commun 8, 15680   DOI
17 Rathjen J, Lake JA, Bettess MD, Washington JM, Chapman G and Rathjen PD (1999) Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 112 (Pt 5), 601-612   DOI
18 Edwards RG, Steptoe PC and Purdy JM (1980) Establishing full-term human pregnancies using cleaving embryos grown in vitro. Br J Obstet Gynaecol 87, 737-756   DOI
19 Devroey P and Van Steirteghem A (2004) A review of ten years experience of ICSI. Hum Reprod Update 10, 19-28   DOI
20 Tesar PJ, Chenoweth JG, Brook FA et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196-199   DOI
21 Brons IG, Smithers LE, Trotter MW et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191-195   DOI
22 Hayashi M, Kawaguchi T, Durcova-Hills G and Imai H (2017) Generation of germ cells from pluripotent stem cells in mammals. Reprod Med Biol 17, 107-114   DOI
23 Ma H, Marti-Gutierrez N, Park SW et al (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548, 413-419   DOI
24 Zhang C, Quan R and Wang J (2018) Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol Genet 27, R79-R88   DOI
25 Tang L, Zeng Y, Du H et al (2017) CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics 292, 525-533   DOI
26 Sun M, Yuan Q, Niu M et al (2018) Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ 25, 747-764   DOI
27 Marcin Samiec MS (2018) Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? - A review. Annals of Animal Science (Ann Anim Sci) 18, 623-638   DOI
28 Lee HS, Ma H, Juanes RC et al (2012) Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Rep 1, 506-515   DOI
29 Zegers-Hochschild F, Adamson GD, Dyer S et al (2017) The international glossary on infertility and fertility care. Fertil Steril 108, 393-406   DOI
30 Vaiarelli A, Cimadomo D, Capalbo A et al (2016) Pre-implantation genetic testing in ART: Who will benefit and what is the evidence? J Assist Reprod Genet 33, 1273-1278   DOI
31 Steffann J, Frydman N, Gigarel N et al (2006) Analysis of mtDNA variant segregation during early human embryonic development: A tool for successful NARP preimplantation diagnosis. J Med Genet 43, 244-247   DOI
32 Wolf DP, Mitalipov N and Mitalipov S (2015) Mitochondrial replacement therapy in reproductive medicine. Trends Mol Med 21, 68-76   DOI
33 Tachibana M, Kuno T and Yaegashi N (2018) Mitochondrial replacement therapy and assisted reproductive technology: A paradigm shift toward treatment of genetic diseases in gametes or in early embryos. Reprod Med Biol 17, 421-433   DOI
34 Tachibana M, Sparman M, Sritanaudomchai H et al (2009) Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461, 367-372   DOI
35 Kang X, He W and Huang Y (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/cas-mediated genome editing. J Assist Reprod Genet 33, 581-588   DOI
36 Liang P, Ding C, Sun H et al (2017) Correction of beta-thalassemia mutant by base editor in human embryos. Protein Cell 8, 811-822   DOI
37 Zhou C, Zhang M, Wei Y et al (2017) Highly efficient base editing in human tripronuclear zygotes. Protein Cell 8, 772-775   DOI
38 McGrath J and Solter D (1983) Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220, 1300-1302   DOI
39 Hyslop LA, Blakeley P, Craven L et al (2016) Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 534, 383-386   DOI
40 Tachibana M, Amato P, Sparman M et al (2013) Towards germline gene therapy of inherited mitochondrial diseases. Nature 493, 627-631   DOI
41 Thomson JA, Kalishman J, Golos TG et al (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 92, 7844-7848   DOI
42 Evans MJ and Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156   DOI
43 Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147   DOI
44 Daughtry B and Mitalipov S (2014) Concise review: Parthenote stem cells for regenerative medicine: Genetic, epigenetic, and developmental features. Stem Cells Transl Med 3, 290-298   DOI
45 Wolf DP, Morey R, Kang E et al (2017) Concise review: Embryonic stem cells derived by somatic cell nuclear transfer: A horse in the race? Stem Cells 35, 26-34   DOI
46 Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676   DOI
47 Okita K, Ichisaka T and Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448, 313-317   DOI
48 Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872   DOI
49 Zhang J, Liu H, Luo S et al (2017) Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online 34, 361-368   DOI
50 Kang E, Wu J, Gutierrez NM et al (2016) Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 540, 270-275   DOI
51 Wakayama T and Yanagimachi R (1998) The first polar body can be used for the production of normal offspring in mice. Biol Reprod 59, 100-104   DOI
52 Wakayama T, Hayashi Y and Ogura A (1997) Participation of the female pronucleus derived from the second polar body in full embryonic development of mice. J Reprod Fertil 110, 263-266   DOI
53 Ma H, O'Neil RC, Marti Gutierrez N et al (2017) Functional human oocytes generated by transfer of polar body genomes. Cell Stem Cell 20, 112-119   DOI
54 Hikabe O, Hamazaki N, Nagamatsu G et al (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539, 299-303   DOI
55 Ma H, Morey R, O'Neil RC et al (2014) Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511, 177-183   DOI
56 Yamada M, Johannesson B, Sagi I et al (2014) Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 510, 533-536   DOI
57 Reproduction and fertility: How could stem cells help? https://www.eurostemcell.org/reproduction-and-fertility-how-could-stem-cells-help
58 Hayashi K, Ohta H, Kurimoto K, Aramaki S and Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519-532   DOI
59 Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H and Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338, 971-975   DOI
60 Zhou Q, Wang M, Yuan Y et al (2016) Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18, 330-340   DOI
61 Inoue K, Ogonuki N, Mochida K et al (2003) Effects of donor cell type and genotype on the efficiency of mouse somatic cell cloning. Biol Reprod 69, 1394-1400   DOI
62 Matoba S and Zhang Y (2018) Somatic cell nuclear transfer reprogramming: Mechanisms and applications. Cell Stem Cell 23, 471-485   DOI
63 GURDON JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10, 622-640
64 Thuan NV, Kishigami S and Wakayama T (2010) How to improve the success rate of mouse cloning technology. J Reprod Dev 56, 20-30   DOI
65 Wakayama S, Ohta H, Kishigami S et al (2005) Establishment of male and female nuclear transfer embryonic stem cell lines from different mouse strains and tissues. Biol Reprod 72, 932-936   DOI
66 Tachibana M, Amato P, Sparman M et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153, 1228-1238   DOI
67 Chung YG, Eum JH, Lee JE et al (2014) Human somatic cell nuclear transfer using adult cells. Cell Stem Cell 14, 777-780   DOI
68 Ziller MJ, Muller F, Liao J et al (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 7, e1002389   DOI
69 Dinger TC, Eckardt S, Choi SW et al (2008) Androgenetic embryonic stem cells form neural progenitor cells in vivo and in vitro. Stem Cells 26, 1474-1483   DOI
70 Mitalipov SM, Nusser KD and Wolf DP (2001) Parthenogenetic activation of rhesus monkey oocytes and reconstructed embryos. Biol Reprod 65, 253-259   DOI
71 Yang H, Shi L, Wang BA et al (2012) Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149, 605-617   DOI
72 Tarkowski AK, Witkowska A and Nowicka J (1970) Experimental partheonogenesis in the mouse. Nature 226, 162-165   DOI
73 Chen Z, Liu Z, Huang J et al (2009) Birth of parthenote mice directly from parthenogenetic embryonic stem cells. Stem Cells 27, 2136-2145   DOI
74 Sritanaudomchai H, Ma H, Clepper L et al (2010) Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Hum Reprod 25, 1927-1941   DOI
75 Li W, Shuai L, Wan H et al (2012) Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490, 407-411   DOI
76 Ding C, Huang S, Qi Q et al (2015) Derivation of a homozygous human androgenetic embryonic stem cell line. Stem Cells Dev 24, 2307-2316   DOI
77 Paffoni A, Brevini TA, Gandolfi F and Ragni G (2008) Parthenogenetic activation: Biology and applications in the ART laboratory. Placenta 29 Suppl B, 121-125   DOI
78 Graham CF (1974) The production of parthenogenetic mammalian embryos and their use in biological research. Biol Rev Camb Philos Soc 49, 399-424   DOI
79 Leeb M and Wutz A (2011) Derivation of haploid embryonic stem cells from mouse embryos. Nature 479, 131-134   DOI
80 Wutz A (2014) Haploid mouse embryonic stem cells: Rapid genetic screening and germline transmission. Annu Rev Cell Dev Biol 30, 705-722   DOI