• Title/Summary/Keyword: pluripotent

Search Result 224, Processing Time 0.043 seconds

NEUROD1 Intrinsically Initiates Differentiation of Induced Pluripotent Stem Cells into Neural Progenitor Cells

  • Choi, Won-Young;Hwang, Ji-Hyun;Cho, Ann-Na;Lee, Andrew J.;Jung, Inkyung;Cho, Seung-Woo;Kim, Lark Kyun;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1011-1022
    • /
    • 2020
  • Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.

In vitro maturation of human pluripotent stem cell-derived cardiomyocyte: A promising approach for cell therapy

  • Park, Yun-Gwi;Son, Yeo-Jin;Moon, Sung-Hwan;Park, Soon-Jung
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.67-79
    • /
    • 2022
  • Currently, there is no treatment to reverse or cure heart failure caused by ischemic heart disease and myocardial infarction despite the remarkable advances in modern medicine. In addition, there is a lack of evidence regarding the existence of stem cells involved in the proliferation and regeneration of cardiomyocytes in adult hearts. As an alternative solution to overcome this problem, protocols for differentiating human pluripotent stem cell (hPSC) into cardiomyocyte have been established, which further led to the development of cell therapy in major leading countries in this field. Recently, clinical studies have confirmed the safety of hPSC-derived cardiac progenitor cells (CPCs). Although several institutions have shown progress in their research on cell therapy using hPSC-derived cardiomyocytes, the functions of cardiomyocytes used for transplantation remain to be those of immature cardiomyocytes, which poses a risk of graft-induced arrhythmias in the early stage of transplantation. Over the last decade, research aimed at achieving maturation of immature cardiomyocytes, showing same characteristics as those of mature cardiomyocytes, has been actively conducted using various approaches at leading research institutes worldwide. However, challenges remain in technological development for effective generation of mature cardiomyocytes with the same properties as those present in the adult hearts. Therefore, in this review, we provide an overview of the technological development status for maturation methods of hPSC-derived cardiomyocytes and present a direction for future development of maturation techniques.

Mitochondrial energy metabolic transcriptome profiles during cardiac differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Kim, Yeseul;Kim, Jae Ho;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.357-365
    • /
    • 2022
  • Simultaneous myofibril and mitochondrial development is crucial for the cardiac differentiation of pluripotent stem cells (PSCs). Specifically, mitochondrial energy metabolism (MEM) development in cardiomyocytes is essential for the beating function. Although previous studies have reported that MEM is correlated with cardiac differentiation, the process and timing of MEM regulation for cardiac differentiation remain poorly understood. Here, we performed transcriptome analysis of cells at specific stages of cardiac differentiation from mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs). We selected MEM genes strongly upregulated at cardiac lineage commitment and in a time-dependent manner during cardiac maturation and identified the protein-protein interaction networks. Notably, MEM proteins were found to interact closely with cardiac maturation-related proteins rather than with cardiac lineage commitment-related proteins. Furthermore, MEM proteins were found to primarily interact with cardiac muscle contractile proteins rather than with cardiac transcription factors. We identified several candidate MEM regulatory genes involved in cardiac lineage commitment (Cck, Bdnf, Fabp4, Cebpα, and Cdkn2a in mESC-derived cells, and CCK and NOS3 in hiPSC-derived cells) and cardiac maturation (Ppargc1α, Pgam2, Cox6a2, and Fabp3 in mESC-derived cells, and PGAM2 and SLC25A4 in hiPSC-derived cells). Therefore, our findings show the importance of MEM in cardiac maturation.

The Aurora Kinase Inhibitor CYC116 Promotes the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells

  • Sijia, Ji;Wanzhi, Tu;Chenwen, Huang;Ziyang, Chen;Xinyue, Ren;Bingqing, He;Xiaoyan, Ding;Yuelei, Chen;Xin, Xie
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.923-934
    • /
    • 2022
  • Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great potential in applications such as regenerative medicine, cardiac disease modeling, and in vitro drug evaluation. However, hPSC-CMs are immature, which limits their applications. During development, the maturation of CMs is accompanied by a decline in their proliferative capacity. This phenomenon suggests that regulating the cell cycle may facilitate the maturation of hPSC-CMs. Aurora kinases are essential kinases that regulate the cell cycle, the role of which is not well studied in hPSC-CM maturation. Here, we demonstrate that CYC116, an inhibitor of Aurora kinases, significantly promotes the maturation of CMs derived from both human embryonic stem cells (H1 and H9) and iPSCs (induced PSCs) (UC013), resulting in increased expression of genes related to cardiomyocyte function, better organization of the sarcomere, increased sarcomere length, increased number of mitochondria, and enhanced physiological function of the cells. In addition, a number of other Aurora kinase inhibitors have also been found to promote the maturation of hPSC-CMs. Our data suggest that blocking aurora kinase activity and regulating cell cycle progression may promote the maturation of hPSC-CMs.

Homogeneity of XEN Cells Is Critical for Generation of Chemically Induced Pluripotent Stem Cells

  • Dahee Jeong;Yukyeong Lee;Seung-Won Lee;Seokbeom Ham;Minseong Lee;Na Young Choi;Guangming Wu;Hans R. Scholer;Kinarm Ko
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.209-218
    • /
    • 2023
  • In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method which can produce homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.

Human Pluripotent Stem Cell-Derived Alveolar Organoids: Cellular Heterogeneity and Maturity

  • Ji-Hye Jung;Se-Ran Yang;Woo Jin Kim;Chin Kook Rhee;Seok-Ho Hong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.1
    • /
    • pp.52-64
    • /
    • 2024
  • Chronic respiratory diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and respiratory infections injure the alveoli; the damage evoked is mostly irreversible and occasionally leads to death. Achieving a detailed understanding of the pathogenesis of these fatal respiratory diseases has been hampered by limited access to human alveolar tissue and the differences between mice and humans. Thus, the development of human alveolar organoid (AO) models that mimic in vivo physiology and pathophysiology has gained tremendous attention over the last decade. In recent years, human pluripotent stem cells (hPSCs) have been successfully employed to generate several types of organoids representing different respiratory compartments, including alveolar regions. However, despite continued advances in three-dimensional culture techniques and single-cell genomics, there is still a profound need to improve the cellular heterogeneity and maturity of AOs to recapitulate the key histological and functional features of in vivo alveolar tissue. In particular, the incorporation of immune cells such as macrophages into hPSC-AO systems is crucial for disease modeling and subsequent drug screening. In this review, we summarize current methods for differentiating alveolar epithelial cells from hPSCs followed by AO generation and their applications in disease modeling, drug testing, and toxicity evaluation. In addition, we review how current hPSC-AOs closely resemble in vivo alveoli in terms of phenotype, cellular heterogeneity, and maturity.

Differentiation and Characterization of Cystic Fibrosis Transmembrane Conductance Regulator Knockout Human Pluripotent Stem Cells into Salivary Gland Epithelial Progenitors

  • Shuang Yan;Yifei Zhang;Siqi Zhang;Shicheng Wei
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.394-405
    • /
    • 2023
  • The differentiation of pluripotent stem cells has been used to study disease mechanisms and development. We previously described a method for differentiating human pluripotent stem cells (hPSCs) into salivary gland epithelial progenitors (SGEPs). Here, cystic fibrosis transmembrane conductance regulator (CFTR) knockout hPSCs were differentiated into SGEPs derived from CFTR knockout hESCs (CF-SGEPs) using the same protocol to investigate whether the hPSC-derived SGEPs can model the characteristics of CF. CF-a disease that affects salivary gland (SG) function-is caused by mutations of the CFTR gene. Firstly, we successfully generated CFTR knockout hPSCs with reduced CFTR protein expression using the CRISPR-Cas9 system. After 16 days of differentiation, the protein expression of CFTR decreased in SGEPs derived from CFTR knockout hESCs (CF-SGEPs). RNA-Seq revealed that multiple genes modulating SG development and function were down-regulated, and positive regulators of inflammation were up-regulated in CF-SGEPs, correlating with the salivary phenotype of CF patients. These results demonstrated that CFTR suppression disrupted the differentiation of hPSC-derived SGEPs, which modeled the SG development of CF patients. In summary, this study not only proved that the hPSC-derived SGEPs could serve as manipulable and readily accessible cell models for the study of SG developmental diseases but also opened up new avenues for the study of the CF mechanism.

Energy Metabolism in Human Pluripotent Stem and Differentiated Cells Compared Using a Seahorse XF96 Extracellular Flux Analyzer

  • Hyun Kyu Kim;Yena Song;Minji Kye;Byeongho Yu;Sang Beom Park;Ji Hyeon Kim;Sung-Hwan Moon;Hyungkyu Choi;Jong-Seok Moon;Jae Sang Oh;Man Ryul Lee
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.194-203
    • /
    • 2024
  • Evaluating cell metabolism is crucial during pluripotent stem cell (PSC) differentiation and somatic cell reprogramming as it affects cell fate. As cultured stem cells are heterogeneous, a comparative analysis of relative metabolism using existing metabolic analysis methods is difficult, resulting in inaccuracies. In this study, we measured human PSC basal metabolic levels using a Seahorse analyzer. We used fibroblasts, human induced PSCs, and human embryonic stem cells to monitor changes in basal metabolic levels according to cell number and determine the number of cells suitable for analysis. We evaluated normalization methods using glucose and selected the most suitable for the metabolic analysis of heterogeneous PSCs during the reprogramming stage. The response of fibroblasts to glucose increased with starvation time, with oxygen consumption rate and extracellular acidification rate responding most effectively to glucose 4 hours after starvation and declining after 5 hours of starvation. Fibroblasts and PSCs achieved appropriate responses to glucose without damaging their metabolism 2~4 and 2~3 hours after starvation, respectively. We developed a novel method for comparing basal metabolic rates of fibroblasts and PSCs, focusing on quantitative analysis of glycolysis and oxidative phosphorylation using glucose without enzyme inhibitors. This protocol enables efficient comparison of energy metabolism among cell types, including undifferentiated PSCs, differentiated cells, and cells undergoing cellular reprogramming, and addresses critical issues, such as differences in basal metabolic levels and sensitivity to normalization, providing valuable insights into cellular energetics.

Lupus Heart Disease Modeling with Combination of Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Lupus Patient Serum

  • Narae Park;Yeri Alice Rim;Hyerin Jung;Yoojun Nam;Ji Hyeon Ju
    • International Journal of Stem Cells
    • /
    • v.15 no.3
    • /
    • pp.233-246
    • /
    • 2022
  • Background and Objectives: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease mainly affecting young women of childbearing age. SLE affects the skin, joints, muscles, kidneys, lungs, and heart. Cardiovascular complications are common causes of death in patients with SLE. However, the complexity of the cardiovascular system and the rarity of SLE make it difficult to investigate these morbidities. Patient-derived induced pluripotent stem cells (iPSCs) serve as a novel tool for drug screening and pathophysiological studies in the absence of patient samples. Methods and Results: We differentiated CMs from HC- and SLE-iPSCs using 2D culture platforms. SLE-CMs showed decreased proliferation and increased levels of fibrosis and hypertrophy marker expression; however, HC-and SLE-monolayer CMs reacted differently to SLE serum treatment. HC-iPSCs were also differentiated into CMs using 3D spheroid culture and anti-Ro autoantibody was treated along with SLE serum. 3D-HC-CMs generated more mature CMs compared to the CMs generated using 2D culture. The treatment of anti-Ro autoantibody rapidly increased the gene expression of fibrosis, hypertrophy, and apoptosis markers, and altered the calcium signaling in the CMs. Conclusions: iPSC derived cardiomyocytes with patient-derived serum, and anti-Ro antibody treatment could serve in effective autoimmune disease modeling including SLE. We believe that the present study might briefly provide possibilities on the application of a combination of patient-derived materials and iPSCs in disease modeling of autoimmune diseases.

Generation of Urothelial Cells from Mouse-Induced Pluripotent Stem Cells

  • Dongxu Zhang;Fengze Sun;Huibao Yao;Di Wang;Xingjun Bao;Jipeng Wang;Jitao Wu
    • International Journal of Stem Cells
    • /
    • v.15 no.4
    • /
    • pp.347-358
    • /
    • 2022
  • Background and Objectives: The search for a suitable alternative for urethral defect is a challenge in the field of urethral tissue engineering. Induced pluripotent stem cells (iPSCs) possess multipotential for differentiation. The in vitro derivation of urothelial cells from mouse-iPSCs (miPSCs) has thus far not been reported. The purpose of this study was to establish an efficient and robust differentiation protocol for the differentiation of miPSCs into urothelial cells. Methods and Results: Our protocol made the visualization of differentiation processes of a 2-step approach possible. We firstly induced miPSCs into posterior definitive endoderm (DE) with glycogen synthase kinase-3𝛽 (GSK3𝛽) inhibitor and Activin A. We investigated the optimal conditions for DE differentiation with GSK3𝛽 inhibitor treatment by varying the treatment time and concentration. Differentiation into urothelial cells, was directed with all-trans retinoic acid (ATRA) and recombinant mouse fibroblast growth factor-10 (FGF-10). Specific markers expressed at each stage of differentiation were validated by flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR) assay, immunofluorescence staining, and western blotting Assay. The miPSC-derived urothelial cells were successfully in expressed urothelial cell marker genes, proteins, and normal microscopic architecture. Conclusions: We built a model of directed differentiation of miPSCs into urothelial cells, which may provide the evidence for a regenerative potential of miPSCs in preclinical animal studies.