DOI QR코드

DOI QR Code

Human Pluripotent Stem Cell-Derived Alveolar Organoids: Cellular Heterogeneity and Maturity

  • Ji-Hye Jung (Department of Internal Medicine, Kangwon National University School of Medicine) ;
  • Se-Ran Yang (Department of Thoracic and Cardiovascular Surgery, Kangwon National University School of Medicine) ;
  • Woo Jin Kim (Department of Internal Medicine, Kangwon National University School of Medicine) ;
  • Chin Kook Rhee (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Seok-Ho Hong (Department of Internal Medicine, Kangwon National University School of Medicine)
  • Received : 2023.08.25
  • Accepted : 2023.11.22
  • Published : 2024.01.31

Abstract

Chronic respiratory diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and respiratory infections injure the alveoli; the damage evoked is mostly irreversible and occasionally leads to death. Achieving a detailed understanding of the pathogenesis of these fatal respiratory diseases has been hampered by limited access to human alveolar tissue and the differences between mice and humans. Thus, the development of human alveolar organoid (AO) models that mimic in vivo physiology and pathophysiology has gained tremendous attention over the last decade. In recent years, human pluripotent stem cells (hPSCs) have been successfully employed to generate several types of organoids representing different respiratory compartments, including alveolar regions. However, despite continued advances in three-dimensional culture techniques and single-cell genomics, there is still a profound need to improve the cellular heterogeneity and maturity of AOs to recapitulate the key histological and functional features of in vivo alveolar tissue. In particular, the incorporation of immune cells such as macrophages into hPSC-AO systems is crucial for disease modeling and subsequent drug screening. In this review, we summarize current methods for differentiating alveolar epithelial cells from hPSCs followed by AO generation and their applications in disease modeling, drug testing, and toxicity evaluation. In addition, we review how current hPSC-AOs closely resemble in vivo alveoli in terms of phenotype, cellular heterogeneity, and maturity.

Keywords

Acknowledgement

This research was supported by a grant from the Korean Fund for Regenerative Medicine (KFRM) funded by the Korean government (the Ministry of Science and ICT, the Ministry of Health & Welfare) (22A0304L1-01) as well as the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (2022M3A9E4016936). Finally, this study was funded in part by Particulate Matter Management Specialized Graduate Program through the Korea Environmental Industry & Technology Institute (KEITI) and the KEITI through the Core Technology Development Project for Environmental Disease Prevention and Management (Grant number 2022003310008) funded by the Ministry of Environment (MOE).

References

  1. Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 2011;108:E1475-83.
  2. Bain CC, MacDonald AS. The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity. Mucosal Immunol 2022;15:223-34. https://doi.org/10.1038/s41385-021-00480-w
  3. Hume PS, Gibbings SL, Jakubzick CV, Tuder RM, Curran-Everett D, Henson PM, et al. Localization of macrophages in the human lung via design-based stereology. Am J Respir Crit Care Med 2020;201:1209-17. https://doi.org/10.1164/rccm.201911-2105OC
  4. Gerard L, Lecocq M, Bouzin C, Hoton D, Schmit G, Pereira JP, et al. Increased angiotensin-converting enzyme 2 and loss of alveolar type II cells in COVID-19-related acute respiratory distress syndrome. Am J Respir Crit Care Med 2021;204:1024-34. https://doi.org/10.1164/rccm.202012-4461OC
  5. Elbert KJ, Schafer UF, Schafers HJ, Kim KJ, Lee VH, Lehr CM. Monolayers of human alveolar epithelial cells in primary culture for pulmonary absorption and transport studies. Pharm Res 1999;16:601-8. https://doi.org/10.1023/A:1018887501927
  6. Demaio L, Tseng W, Balverde Z, Alvarez JR, Kim KJ, Kelley DG, et al. Characterization of mouse alveolar epithelial cell monolayers. Am J Physiol Lung Cell Mol Physiol 2009;296:L1051-8. https://doi.org/10.1152/ajplung.00021.2009
  7. Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 2020;583:830-3. https://doi.org/10.1038/s41586-020-2312-y
  8. Wu DC, Boyd AS, Wood KJ. Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine. Front Biosci 2007;12:4525-35. https://doi.org/10.2741/2407
  9. Korogi Y, Gotoh S, Ikeo S, Yamamoto Y, Sone N, Tamai K, et al. In vitro disease modeling of Hermansky-Pudlak syndrome type 2 using human induced pluripotent stem cell-derived alveolar organoids. Stem Cell Reports 2019;12:431-40.
  10. Miller AJ, Hill DR, Nagy MS, Aoki Y, Dye BR, Chin AM, et al. In vitro induction and in vivo engraftment of lung bud tip progenitor cells derived from human pluripotent stem cells. Stem Cell Reports 2018;10:101-19. https://doi.org/10.1016/j.stemcr.2017.11.012
  11. Chen YW, Huang SX, de Carvalho AL, Ho SH, Islam MN, Volpi S, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol 2017;19:542-9. https://doi.org/10.1038/ncb3510
  12. Dye BR, Dedhia PH, Miller AJ, Nagy MS, White ES, Shea LD, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. Elife 2016;5:e19732.
  13. Leibel SL, Winquist A, Tseu I, Wang J, Luo D, Shojaie S, et al. Reversal of surfactant protein B deficiency in patient specific human induced pluripotent stem cell derived lung organoids by gene therapy. Sci Rep 2019;9:13450.
  14. Strikoudis A, Cieslak A, Loffredo L, Chen YW, Patel N, Saqi A, et al. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep 2019;27:3709-23. https://doi.org/10.1016/j.celrep.2019.05.077
  15. McCauley KB, Hawkins F, Serra M, Thomas DC, Jacob A, Kotton DN. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 2017;20:844-57. https://doi.org/10.1016/j.stem.2017.03.001
  16. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 2009;25:221-51. https://doi.org/10.1146/annurev.cellbio.042308.113344
  17. Yiangou L, Ross AD, Goh KJ, Vallier L. Human pluripotent stem cell-derived endoderm for modeling development and clinical applications. Cell Stem Cell 2018;22:485-99. https://doi.org/10.1016/j.stem.2018.03.016
  18. Tam PP, Loebel DA. Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 2007;8:368-81. https://doi.org/10.1038/nrg2084
  19. Kanai-Azuma M, Kanai Y, Gad JM, Tajima Y, Taya C, Kurohmaru M, et al. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 2002;129:2367-79. https://doi.org/10.1242/dev.129.10.2367
  20. Chia CY, Madrigal P, Denil SL, Martinez I, Garcia-Bernardo J, El-Khairi R, et al. GATA6 cooperates with EOMES/SMAD2/3 to deploy the gene regulatory network governing human definitive endoderm and pancreas formation. Stem Cell Reports 2019;12:57-70. https://doi.org/10.1016/j.stemcr.2018.12.003
  21. Yang J, Lu P, Li M, Yan C, Zhang T, Jiang W. GATA6-AS1 regulates GATA6 expression to modulate human endoderm differentiation. Stem Cell Reports 2020;15:694-705. https://doi.org/10.1016/j.stemcr.2020.07.014
  22. Li QV, Dixon G, Verma N, Rosen BP, Gordillo M, Luo R, et al. Genome-scale screens identify JNK-JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Nat Genet 2019;51:999-1010. https://doi.org/10.1038/s41588-019-0408-9
  23. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 2013;123:3025-36. https://doi.org/10.1172/JCI68782
  24. Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 2014;507:190-4. https://doi.org/10.1038/nature12930
  25. Jacob A, Vedaie M, Roberts DA, Thomas DC, Villacorta-Martin C, Alysandratos KD, et al. Derivation of self-renewing lung alveolar epithelial type II cells from human pluripotent stem cells. Nat Protoc 2019;14:3303-32. https://doi.org/10.1038/s41596-019-0220-0
  26. Gotoh S, Ito I, Nagasaki T, Yamamoto Y, Konishi S, Korogi Y, et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Reports 2014;3:394-403. https://doi.org/10.1016/j.stemcr.2014.07.005
  27. Rock JR, Hogan BL. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol 2011;27:493-512. https://doi.org/10.1146/annurev-cellbio-100109-104040
  28. Heo HR, Kim J, Kim WJ, Yang SR, Han SS, Lee SJ, et al. Human pluripotent stem cell-derived alveolar epithelial cells are alternatives for in vitro pulmotoxicity assessment. Sci Rep 2019;9:505.
  29. Sun YL, Hurley K, Villacorta-Martin C, Huang J, Hinds A, Gopalan K, et al. Heterogeneity in human induced pluripotent stem cell-derived alveolar epithelial type II cells revealed with ABCA3/SFTPC reporters. Am J Respir Cell Mol Biol 2021;65:442-60. https://doi.org/10.1165/rcmb.2020-0259OC
  30. Frank DB, Penkala IJ, Zepp JA, Sivakumar A, Linares-Saldana R, Zacharias WJ, et al. Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proc Natl Acad Sci U S A 2019;116:4362-71. https://doi.org/10.1073/pnas.1813952116
  31. Frank DB, Peng T, Zepp JA, Snitow M, Vincent TL, Penkala IJ, et al. Emergence of a wave of Wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation. Cell Rep 2016;17:2312-25. https://doi.org/10.1016/j.celrep.2016.11.001
  32. Zacharias WJ, Frank DB, Zepp JA, Morley MP, Alkhaleel FA, Kong J, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 2018;555:251-5. https://doi.org/10.1038/nature25786
  33. Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. Single-cell Wnt signaling niches maintain stem-ness of alveolar type 2 cells. Science 2018;359:1118-23. https://doi.org/10.1126/science.aam6603
  34. Chen Q, Liu Y. Heterogeneous groups of alveolar type II cells in lung homeostasis and repair. Am J Physiol Cell Physiol 2020;319:C991-6. https://doi.org/10.1152/ajpcell.00341.2020
  35. Shen H, Chen W, Liu Y, Castaldi A, Castillo J, Horie M, et al. GRAMD2 + alveolar type I cell plasticity facilitates cell state transitions in organoid culture. bioRxiv [Preprint] 2023 Oct 18. https://doi:10.1101/2023.10.17.560801.
  36. Yamamoto Y, Gotoh S, Korogi Y, Seki M, Konishi S, Ikeo S, et al. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat Methods 2017;14:1097-106. https://doi.org/10.1038/nmeth.4448
  37. Choi S, Choi J, Cheon S, Song J, Kim SY, Kim JE, et al. Pulmonary fibrosis model using micro-CT analyzable human PSC-derived alveolar organoids containing alveolar macrophage-like cells. Cell Biol Toxicol 2022;38:557-75. https://doi.org/10.1007/s10565-022-09698-1
  38. Suezawa T, Kanagaki S, Moriguchi K, Masui A, Nakao K, Toyomoto M, et al. Disease modeling of pulmonary fibrosis using human pluripotent stem cell-derived alveolar organoids. Stem Cell Reports 2021;16:2973-87. https://doi.org/10.1016/j.stemcr.2021.10.015
  39. Cotran RS, Gimbrone MA Jr, Bevilacqua MP, Mendrick DL, Pober JS. Induction and detection of a human endothelial activation antigen in vivo. J Exp Med 1986;164:661-6. https://doi.org/10.1084/jem.164.2.661
  40. Kim JH, An GH, Kim JY, Rasaei R, Kim WJ, Jin X, et al. Human pluripotent stem-cell-derived alveolar organoids for modeling pulmonary fibrosis and drug testing. Cell Death Discov 2021;7:48.
  41. Kim JH, Kim J, Kim WJ, Choi YH, Yang SR, Hong SH. Diesel particulate matter 2.5 induces epithelial-to-mesenchymal transition and upregulation of SARS-CoV-2 receptor during human pluripotent stem cell-derived alveolar organoid development. Int J Environ Res Public Health 2020;17:8410.
  42. Lee J, Baek H, Jang J, Park J, Cha SR, Hong SH, et al. Establishment of a human induced pluripotent stem cell derived alveolar organoid for toxicity assessment. Toxicol In Vitro 2023;89:105585.
  43. Suezawa T, Kanagaki S, Korogi Y, Nakao K, Hirai T, Murakami K, et al. Modeling of lung phenotype of Hermansky-Pudlak syndrome type I using patient-specific iPSCs. Respir Res 2021;22:284.
  44. Alysandratos KD, Russo SJ, Petcherski A, Taddeo EP, Acin-Perez R, Villacorta-Martin C, et al. Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. Cell Rep 2021;36:109636.
  45. Ptasinski V, Monkley SJ, Ost K, Tammia M, Alsafadi HN, Overed-Sayer C, et al. Modeling fibrotic alveolar transitional cells with pluripotent stem cell-derived alveolar organoids. Life Sci Alliance 2023;6:e202201853.
  46. Pei R, Feng J, Zhang Y, Sun H, Li L, Yang X, et al. Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection. Protein Cell 2021;12:717-33. https://doi.org/10.1007/s13238-020-00811-w
  47. Tamai K, Sakai K, Yamaki H, Moriguchi K, Igura K, Maehana S, et al. iPSC-derived mesenchymal cells that support alveolar organoid development. Cell Rep Methods 2022;2:100314.
  48. Saradna A, Do DC, Kumar S, Fu QL, Gao P. Macrophage polarization and allergic asthma. Transl Res 2018;191:1-14. https://doi.org/10.1016/j.trsl.2017.09.002
  49. Heo HR, Hong SH. Generation of macrophage containing alveolar organoids derived from human pluripotent stem cells for pulmonary fibrosis modeling and drug efficacy testing. Cell Biosci 2021;11:216.
  50. Seo HR, Han HJ, Lee Y, Noh YW, Cho SJ, Kim JH. Human pluripotent stem cell-derived alveolar organoid with macrophages. Int J Mol Sci 2022;23:9211.
  51. Hong Y, Dong X, Chang L, Xie C, Chang M, Aguilar JS, et al. Microglia-containing cerebral organoids derived from induced pluripotent stem cells for the study of neurological diseases. iScience 2023;26:106267.
  52. Xu R, Boreland AJ, Li X, Erickson C, Jin M, Atkins C, et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Reports 2021;16:1923-37. https://doi.org/10.1016/j.stemcr.2021.06.011
  53. Noel G, Baetz NW, Staab JF, Donowitz M, Kovbasnjuk O, Pasetti MF, et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci Rep 2017;7:45270.
  54. Kakni P, Truckenmuller R, Habibovic P, van Griensven M, Giselbrecht S. A microwell-based intestinal organoid-macrophage co-culture system to study intestinal inflammation. Int J Mol Sci 2022;23:15364.
  55. Alysandratos KD, Garcia-de-Alba C, Yao C, Pessina P, Huang J, Villacorta-Martin C, et al. Culture impact on the transcriptomic programs of primary and iPSC-derived human alveolar type 2 cells. JCI Insight 2023;8:e158937.
  56. Lee MO, Lee SG, Jung CR, Son YS, Ryu JW, Jung KB, et al. Development of a quantitative prediction algorithm for target organ-specific similarity of human pluripotent stem cell-derived organoids and cells. Nat Commun 2021;12:4492.
  57. Abo KM, Sainz de Aja J, Lindstrom-Vautrin J, Alysandratos KD, Richards A, Garcia-de-Alba C, et al. Air-liquid interface culture promotes maturation and allows environmental exposure of pluripotent stem cell-derived alveolar epithelium. JCI Insight 2022;7:e155589.
  58. Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell 2017;21:472-88.
  59. de Carvalho AL, Strikoudis A, Liu HY, Chen YW, Dantas TJ, Vallee RB, et al. Glycogen synthase kinase 3 induces multilineage maturation of human pluripotent stem cell-derived lung progenitors in 3D culture. Development 2019;146:dev171652.
  60. Stahlman MT, Besnard V, Wert SE, Weaver TE, Dingle S, Xu Y, et al. Expression of ABCA3 in developing lung and other tissues. J Histochem Cytochem 2007;55:71-83. https://doi.org/10.1369/jhc.6A6962.2006
  61. Youk J, Kim T, Evans KV, Jeong YI, Hur Y, Hong SP, et al. Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2. Cell Stem Cell 2020;27:905-19.