• Title/Summary/Keyword: platinum nanoparticles

검색결과 74건 처리시간 0.029초

Plasmonic effects and size relation of gold-platinum alloy nanoparticles

  • Jawad, Muhammad;Ali, Shazia;Waseem, Amir;Rabbani, Faiz;Amin, Bilal Ahmad Zafar;Bilal, Muhammad;Shaikh, Ahson J.
    • Advances in nano research
    • /
    • 제7권3호
    • /
    • pp.169-180
    • /
    • 2019
  • Plasmonic effects of gold and platinum alloy nanoparticles (Au-Pt NPs) and their comparison to size was studied. Various factors including ratios of gold and platinum salt, temperature, pH and time of addition of reducing agent were studied for their effect on particle size. The size of gold and platinum alloy nanoparticles increases with increasing concentration of Pt NPs. Temperature dependent synthesis of gold and platinum alloy nanoparticles shows decrease in size at higher temperature while at lower temperature agglomeration occurs. For pH dependent synthesis of Au-Pt nanoparticles, size was found to be increased by increase in pH from 4 to 10. Increasing the time of addition of reducing agent for synthesis of pure and gold-platinum alloy nanoparticles shows gradual increase in size as well as increase in heterogeneity of nanoparticles. The size and elemental analysis of Au-Pt nanoparticles were characterized by UV-Vis spectroscopy, XRD, SEM and EDX techniques.

Platinum nanocomposites and its applications: A review

  • Sharon, Madhuri;Nandgavkar, Isaac;Sharon, Maheshwar
    • Advances in materials Research
    • /
    • 제6권2호
    • /
    • pp.129-153
    • /
    • 2017
  • Platinum is a transition metal that is very resistant to corrosion. It is used as catalyst for converting methyl alcohol to formaldehyde, as catalytic converter in cars, for hydrocracking of heavy oils, in Fuel Cell devices etc. Moreover, Platinum compounds are important ingredient for cancer chemotherapy drugs. The nano forms of Platinum due to its unique physico-chemical properties that are not found in its bulk counterpart, has been found to be of great importance in electronics, optoelectronics, enzyme immobilization etc. The stability of Platinum nanoparticles has supported its use for the development of efficient and durable proton exchange membrane Fuel Cells. The present review concentrates on the use of Platinum conjugated with various metal or compounds, to fabricate nanocomposites, to enhance the efficiency of Platinum nanoparticles. The recent advances in the synthesis methods of different Platinum-based nanocomposites and their applications in Fuel Cell, sensors, bioimaging, light emitting diode, dye sensitized solar cell, hydrogen generation and in biosystems has also been discussed.

백금 나노입자 전착의 전기화학적 분석 (Electrochemical Analysis of the Electrodeposition of Platinum Nanoparticles)

  • 이혜민;조성운;김준현;김창구
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.540-544
    • /
    • 2015
  • 나노입자를 기판 위에 직접 부착시키는 방법인 전착(electrodeposition)을 이용하여 저가의 그라파이트(graphite) 기판 위에 백금 나노입자를 직접 부착시킬 수 있는 전착 욕(bath)을 개발하였고, 백금 나노입자 전착반응의 전기화학적인 특성을 분석하였다. 백금 나노입자 전착의 분극 거동 분석을 통하여 반응메카니즘을 파악하였고, 순환전위측정(cyclic voltammetry)을 통하여 백금 나노입자 전착에서는 물질전달이 속도결정단계임을 확인하였다. 또한 시간대전류법(chronoamperometry)으로 분석한 백금 나노입자 전착의 전류밀도 변화 양상은 백금 나노입자의 결정핵 생성 메카니즘이 instantaneous로 판명되었다. 그라파이트는 다른 탄소계열 기판에 비하여 매우 저가이기 때문에 그라파이트 기판 위에 백금 나노입자를 직접 부착시키는 기술은 산업적으로 유용할 것으로 기대한다.

금속 염을 이용한 백금 나노입자의 형상제어 (Shape Control of Platinum Nanoparticles Using a Metal Salt)

  • 곽성열;이진호;김진우;정택균;김영도
    • 한국분말재료학회지
    • /
    • 제19권6호
    • /
    • pp.393-397
    • /
    • 2012
  • $AgNO_3$ has the characteristic is controlling the inhibition or promotion of particle growth by adsorbing onto specific facets of platinum nanoparticles. Therefore, in this study, $AgNO_3$ was added to control the shape of platinum nanoparticles during the liquid phase reduction process. Consequently, platinum cubes were synthesized when $AgNO_3$ of 1.1 mol% (with respect to the Pt concentration) was added into the solution. Platinum octahedrons were synthesized when 32 mol% (with respect to the Pt concentration) was added into the solution. These results demonstrate that the metal salt $AgNO_3$, effectively controlled the relative growth rates of each facet of Pt nano particles.

액상환원공정을 이용한 백금 나노 입자의 합성 (Synthesis of Platinum Nanoparticles by Liquid Phase Reduction)

  • 이진호;김세훈;김진우;이민하;김영도
    • 한국분말재료학회지
    • /
    • 제19권1호
    • /
    • pp.60-66
    • /
    • 2012
  • In this study, Platinum(Pt) nanoparticles were synthesized by using polyol process which is one of the liquid phase reduction methods. Dihydrogen hexachloroplatinate (IV) hexahydrate $(H_2PtCl_6{\cdot}6H_2O)$, as a precursor, was dissolved in ethylene glycol and silver nitrate ($AgNO_3$) was added as metal salt for shape control of Pt particle. Also, polyvinylpyrrolidone (PVP), as capping agent, was added to reduce the size of particle and to separate the particles. The size of Pt nanoparticles was evaluated particle size analyzer (PSA). The size and morphology of Pt nanoparticles were observed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Synthesized Pt nanoparticles were studied with varying time and temperature of polyol process. Pt nanoparticles have been successfully synthesized with controlled sizes in the range 5-10 and 20-40 nm with cube and multiple-cube shapes.

Synthesis of Platinum Nanoparticles Using Electrostatic Stabilization and Cluster Duplication of Perfluorinated Ionomer

  • Lee, Pyoung-Chan;Kim, Dong-Ouk;Han, Tai-Hoon;Kang, Soo-Jung;Pu, Lyong-Sun;Nam, Jae-Do;Kim, Byung-Woo;Lee, Jun-Ho
    • Macromolecular Research
    • /
    • 제17권3호
    • /
    • pp.187-191
    • /
    • 2009
  • Platinum (Pt) nanoparticles were prepared by the liquid-phase reduction of tetraammineplatinum (II) chloride $([Pt(NH_3)_4]Cl_2)$ using Nafion as a stabilizer under various conditions of the Nation phase. This method is novel in its use of electrostatic interactions between the Pt complex ions and sulfonic groups in the hydrated Nation molecules. The synthesized Pt nanoparticles of the recast film system had a cubic shape. In the case of the Nation solution system, the Pt nanoparticles mainly had a spherical shape. The shapes and sizes of the Pt nanoparticles were strongly influenced by the Nation phase.

열처리 방법으로 탄소나노튜브에 백금 나노입자의 담지 (Platinum nanoparticles loading on carbon nanotube by impregnation and direct heating method)

  • 이창호;김희연;유승곤
    • 대한공업교육학회지
    • /
    • 제32권2호
    • /
    • pp.188-198
    • /
    • 2007
  • 이 연구의 목적은 열처리 방법으로 탄소나노튜브에 백금나노 입자를 담지하는 것이다. 이 목적을 달성하기 위해서 염화백금산 수용액으로부터 hexachloro platinate(IV)를 탄소나노튜브에 흡착시킨 후 환원제를 사용하지 않고 질소분위기에서 $400^{\circ}C$로 열처리 하여 백금 나노입자를 담지 시켰다. 탄소나노튜브에 흡착된 hexachloro platinate(IV)의 함량은 UV-visible spectrophotometer를 사용하여 정량하였고, 탄소나노튜브에 담지된 백금 나노입자 존재와 분산을 확인하기 위해서 열중량분석, X-ray 회절분석, 투과전자현미경 관찰을 수행하였다. hexachloro platinate(IV)를 흡착시킨 탄소나노튜브를 환원제를 사용하지 않고 질소분위기에서 $400^{\circ}C$에서 열처리하면 2 nm 이하의 백금 나노입자가 균일하게 분포되었다. 한편, $800^{\circ}C$에서 열처리한 경우에는 백금입자들이 상호 응집현상이 발생하여 백금 입자의 크기가 커지고 분산이 균일하지 못했다. 따라서 hexachloro platinate(IV)를 탄소나노튜브에 흡착시킨 후 질소분위기에서 $400^{\circ}C$의 간단한 열처리를 통해서 백금 나노입자를 담지시킬 수 있었다.

Synthesis of Platinum-Reduced Graphene Oxide (Pt-rGO) Nanocomposite for Selective Detection of Hydrogen Peroxide as a Peroxidase-Mimic Catalyst

  • Doyun Park;Min Young Cho;Kuan Soo Shin
    • 대한화학회지
    • /
    • 제67권6호
    • /
    • pp.415-419
    • /
    • 2023
  • In this study, we report the one-pot synthesis of reduced graphene oxide (rGO) containing platinum nanoparticles with catalytic activity to break down hydrogen peroxide as a peroxidase-mimicking catalyst. A single reducing agent was used to reduce graphene oxide and a platinum precursor at a moderately low temperature of 70℃. The rGO was homogeneously decorated with platinum nanoparticles. The catalytic activity of Pt-rGO was investigated for the oxidation of 3,3',5,5'- tetramethylbenzidine (TMB), a peroxidase substrate, in the presence of hydrogen peroxide. The Pt-rGO coupled with glucose oxidase was also able to detect glucose at millimolar concentrations (up to 1 mM). Our results show that the Pt-rGO composite is a promising catalyst for the detection of hydrogen peroxide. This method was also applied for the detection of glucose.

Effects of Platinum Nanoparticles on the Postnatal Development of Mouse Pups by Maternal Exposure

  • Park, Eun-Jung;Kim, He-Ro;Kim, Young-Hun;Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • 제25권4호
    • /
    • pp.279-286
    • /
    • 2010
  • Objectives : Platinum nanoparticles (PNPs) are potentially useful for sensing, catalysis, and other applications in the biological and medical sciences. However, little is known about PNP toxicity. In this study, adverse effects of PNPs on the postnatal development of mouse pubs were investigated. Methods : PNPs (size: 20 nm) were prepared and orally administered to mice during premating, gestation, and lactation periods (0.25 mg/kg, 0.5 mg/kg, and 1 mg/kg). Maternal and pup toxicity were evaluated. Results : PNPs did not affect blood biochemical parameters or mortality in dams during the experimental period. Histopathological signs were not observed and pup number was not different between the control and treated groups. Deformity and stillbirth were not observed in the pups. However, PNPs increased pup mortality and decreased the infant growth rate during the lactation period. Conclusion : PNPs may have adverse effects to the postnatal development of mouse pups.

Production of Platinum Nanoparticles and Nanoaggregates Using Neurospora crassa

  • Castro-Longoria, E.;Moreno-Velasquez, S.D.;Vilchis-Nestor, A.R.;Arenas-Berumen, E.;Avalos-Borja, M.
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권7호
    • /
    • pp.1000-1004
    • /
    • 2012
  • Fungal biomass and fungal extract of the nonpathogenic fungus Neurospora crassa were successfully used as reducing agents for the biosynthesis of platinum nanoparticles (PtNPs). The experiment was carried out by exposing the fungal biomass or the fungal extract to a 0.001 M precursor solution of hexachloroplatinic(IV) acid ($H_2PtCl_6$). A change of color of the biomass from pale yellow to dark brown was the first indication of possible formation of PtNPs by the fungus. Subsequent analyses confirmed the intracellular biosynthesis of single PtNPs (4-35 nm in diameter) and spherical nanoaggregates (20-110 nm in diameter). Using the fungal extract, similar results were obtained, producing rounded nanoaggregates of Pt single crystals in the range of 17-76 nm.