DOI QR코드

DOI QR Code

Electrochemical Analysis of the Electrodeposition of Platinum Nanoparticles

백금 나노입자 전착의 전기화학적 분석

  • Lee, Hae-Min (Department of Chemical Engineering, Department of Energy Systems Research, Ajou University) ;
  • Cho, Sung-Woon (Department of Chemical Engineering, Department of Energy Systems Research, Ajou University) ;
  • Kim, Jun-Hyun (Department of Chemical Engineering, Department of Energy Systems Research, Ajou University) ;
  • Kim, Chang-Koo (Department of Chemical Engineering, Department of Energy Systems Research, Ajou University)
  • 이혜민 (아주대학교 화학공학과, 에너지시스템학과) ;
  • 조성운 (아주대학교 화학공학과, 에너지시스템학과) ;
  • 김준현 (아주대학교 화학공학과, 에너지시스템학과) ;
  • 김창구 (아주대학교 화학공학과, 에너지시스템학과)
  • Received : 2014.11.24
  • Accepted : 2014.12.18
  • Published : 2015.10.01

Abstract

A bath for electrodeposition of platinum nanoparitcles on low-cost graphite substrates was developed to attach nanoparticles directly onto a substrate, and electrochemical characteristics of the electrodeposition of platinum nanoparticles were investigated. The reaction mechanism was examined by the analysis of polarization behavior. Cyclic voltammetry measurements revealed that the elecrodeposition of platinum nanoparticles was limited by mass transfer. The chronoamperometric study showed an instantaneous nucleation mechanism during the electrodeposition of platinum nanoparticles on graphite. Because graphite is much cheaper than other carbon-based substrates, the electrodeposition of platinum nanoparticles on the graphite is expected to have useful applications.

나노입자를 기판 위에 직접 부착시키는 방법인 전착(electrodeposition)을 이용하여 저가의 그라파이트(graphite) 기판 위에 백금 나노입자를 직접 부착시킬 수 있는 전착 욕(bath)을 개발하였고, 백금 나노입자 전착반응의 전기화학적인 특성을 분석하였다. 백금 나노입자 전착의 분극 거동 분석을 통하여 반응메카니즘을 파악하였고, 순환전위측정(cyclic voltammetry)을 통하여 백금 나노입자 전착에서는 물질전달이 속도결정단계임을 확인하였다. 또한 시간대전류법(chronoamperometry)으로 분석한 백금 나노입자 전착의 전류밀도 변화 양상은 백금 나노입자의 결정핵 생성 메카니즘이 instantaneous로 판명되었다. 그라파이트는 다른 탄소계열 기판에 비하여 매우 저가이기 때문에 그라파이트 기판 위에 백금 나노입자를 직접 부착시키는 기술은 산업적으로 유용할 것으로 기대한다.

Keywords

References

  1. Abeles, B., Sheng, P., Coutts, M. D. and Arie, Y., "Structural and Electrical Properties of Granular Metal Films," Adv. Phys., 24, 407-461(1975). https://doi.org/10.1080/00018737500101431
  2. Lu, G. and Zangari, G., "Electrodeposition of Platinum on Highly Oriented Pyrolytic Graphite. Part I: Electrochemical Characterization," J. Phys. Chem. B, 109, 7998-8007(2005). https://doi.org/10.1021/jp0407324
  3. Lu, G. and Zangari, G., "Electrodeposition of Platinum Nanoparticles on Highly Oriented PyroliticGraphite Part II: Morphological Characterization by Atomic Force Microscopy," Electrochim. Acta, 51, 2531-2538(2006). https://doi.org/10.1016/j.electacta.2005.07.038
  4. Duarte, M. M. E., Pilla, A. S., Sieben, J. M. and Mayer, C. E., "Platinum Particles Electrodeposition on Carbon Substrates," Electrochem. Commun., 8, 159-164(2006). https://doi.org/10.1016/j.elecom.2005.11.003
  5. Tsai, M.-C.,Yeh, T.-K. and Tsai, C.-H., "An Improved EelectrodepositionTechnique for Preparing Platinum and Platinum-Ruthenium Nanoparticles on Carbon Nanotubes Directly Grown on Carbon Cloth for Methanol Oxidation," Electrochem. Commun., 8, 1445-1452(2006). https://doi.org/10.1016/j.elecom.2006.07.003
  6. El-Deab, M. S. and Ohsaka, T., "Electrocatalysis by Nanoparticles: Oxygen Reduction on Gold Nanoparticles-Electrodeposited Platinum Electrodes," J. Electroanal. Chem., 553, 107-115(2003). https://doi.org/10.1016/S0022-0728(03)00291-2
  7. Naohara, H., Ye, S. and Uosaki, K., "Electrocatalytic Reactivity for Oxygen Reduction at Epitaxially Grown Pd Thin Layers of Various Thickness on Au(111) and Au(100)," Electrochim. Acta, 45, 3305-3309(2000). https://doi.org/10.1016/S0013-4686(00)00440-0
  8. Kim, K. M., Kang, K.-Y., Choi, M. G., and Lee, Y.-G., "Anode Properties of Sn-Ni Nanoparticle Composites for Rechargeable Lithium Batteries," Korean Chem. Eng. Res., 49, 846-850(2011). https://doi.org/10.9713/kcer.2011.49.6.846
  9. Bae, E., Park, H. J., Yoon, J., Kim, Y., Choi, K. and Yi, J., "Bacterial uptake of Silver Nanoparticles in the Presence of Humic Acid and $AgNO_3$," Korean J. Chem. Eng., 28, 267-271(2011). https://doi.org/10.1007/s11814-010-0351-z
  10. Guo, L., Liang, H., Xu, T., Li, C., Meng, Q., Liu, H. and Huang, Y., "A Facile Approach to Preparing Palladium Nanoparticlesembedded Polyvinylpyrrolidone (PVP) Heterogeneous Hybrid Nanofibers Mats by Electrospinning," Korean J. Chem. Eng., 30, 2142-2150(2013). https://doi.org/10.1007/s11814-013-0173-x
  11. Wu, G., Li, L. and Xu, B.-Q., "Effect of Electrochemical Polarization of PtRu/C Catalysts on Methanol Electrooxidation," Electrochim. Acta, 50, 1-10(2004). https://doi.org/10.1016/j.electacta.2004.07.006
  12. Oliveira, R. T. S., Santos, M. C., Marcussi, B. G., Nascente, P. A. P., Bulhoes, L. O. S. and Pereira, E. C., "The Use of a Metallic Bilayer for the Oxidation of Small Organic Molecules," J. Electroanal. Chem., 575, 177-182(2005). https://doi.org/10.1016/j.jelechem.2004.09.009
  13. Pingarron, J. M., Yanez-Sedeno, P. and Gonzalez-Cortes, A., "Gold Nanoparticle-Based Electrochemical Biosensors," Electrochim. Acta, 53, 5848-5866(2008). https://doi.org/10.1016/j.electacta.2008.03.005
  14. Ramirez, E., Erades, L., Philippot, K., Lecante, P. and Chaudret, B., "Shape Control of Platinum Nanoparticles," Adv. Funct. Mater., 17, 2219-2228(2007). https://doi.org/10.1002/adfm.200600633
  15. Guo, D.-J. and Li, H.-L., "High Dispersion and Electrocatalytic Properties of Pt Nanoparticles on SWNT Bundles," J. Electroanal. Chem., 573, 197-202(2004).
  16. Feltham, A. M. and Spiro, M., "Platinized Platinum Electrodes," Chem. Rev., 71, 177-193(1971). https://doi.org/10.1021/cr60270a002
  17. Bard, A. J. and Faulkner, L.R., Electrochemical. Methods: Fundametals and Applications, 2nd ed., John Wiley & Sons, Inc., Hobeken, NJ(2001).
  18. Scharifker, B. and Hills, G., "Theoretical and Experimental Studies of Multiple Nucleation," Electrochim. Acta, 28, 879-889(1983). https://doi.org/10.1016/0013-4686(83)85163-9