• Title/Summary/Keyword: platinum compound

Search Result 45, Processing Time 0.024 seconds

Induction of Apoptosis and Growth-Inhibition by Thymoquinone in ACHN and GP-293 Cell Lines in Comparable with Cis-Platinum

  • Shahraki, Samira;Mohebbati, Reza;Shafei, Mohammad Naser;Mahmoudi, Mahmoud;Hosseinian, Sara;Parhizgar, Soghra;Yazd, Zohreh Naji Ebrahimi;Heravi, Nazanin Entezari;Abadi, Reza Nejad Shahrokh;Khajavirad, Abolfazl
    • Journal of Pharmacopuncture
    • /
    • v.22 no.3
    • /
    • pp.176-183
    • /
    • 2019
  • Objective: In the current work, we investigated the cytotoxic and apoptotic effects of Thymoquinone (TQ), an active compound of Nigella sativa (N. sativa) and Cis-platinum, on normal renal epithelial (GP-293) and human renal adenocarcinoma cell lines (ACHN). Methods: GP-293 and ACHN cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM) with 10% Fetal bovine serum (FBS) and 1% penicillin plus streptomycin antibiotic. The MTT assay was used for cellular viability assessment. Viability of cells was observed using inverted light microscope 24, 48 and 72 h after exposure of the cells to various concentrations of TQ (1, 2.5, 5, 10, 50 and $100{\mu}g/ml$) and Cis-platinum (0.5, 1, 1.5, 2, 3, 6 and $12.5{\mu}g/ml$). Moreover, apoptosis was analyzed with a flow-cytometry method. The untreated cells were considered as control group. Results: Morphological changes such as reduced cell number and increased intercellular distance and reduced cell viability in ACHN and GP-293cell lines were observed in both TQ and Cis- platinum groups; however, Cis-platinum had greater effect on ACHN cell line than GP-293 cell line. In addition, GP-293 cell line was more sensitive to TQ compared to ACHN cell line. Furthermore, TQ and Cis-platinum had apoptotic effects on both ACHN and GP-293 cell lines. Conclusion: Our findings demonstrated that TQ and Cis-platinum had cytotoxic and apoptotic effects on both cell lines, However, GP-293 cell line was more sensitive to TQ. Additionally, Cis-platinum was more effective on ACHN cell line than on GP-293 cell line.

[Pt(II)(cis-DACH) (DPPE)] .$2NO_3$: A Novel Class Of Platinum Complex Exhibiting Selective Cytotoxicity to Human Ovarian Carcinoma Cell Lines and Normal Kidney Cells

  • Jung, Jee-Chang;Chu, Min-Ho;Chang, Sung-Goo;Lee, Kyung-Tae;Rho, Young-Soo
    • Biomolecules & Therapeutics
    • /
    • v.5 no.2
    • /
    • pp.125-132
    • /
    • 1997
  • Cisplatin, a platinum-complex, is currently one of the most effective compounds used in the treat-ment of solid tumors. However, its use is limited by severe side effects such as renal toxicity. Our platinum-based drug discovery program is aimed at developing drugs capable of diminishing toxicity and improving selective cytotoxicity. We synthesized new Pt (II) complex analogue containing 1,2-diaminocyclohexane (DACH) as carrier ligand and 1,2-bis (diphenylphosphino) ethane (DPPE) as a leaving group. Furthermore, nitrate was added to improve the solubility. A new series of [Pt(cia-DACH)(DPPE)] . $2NO_3$ (PC) was synthes-ized and characterized by their elemental analysis and by various spectroscopic techniques [infrared (IR), $_{13}$carbon nuclear magnetic resonance (NMR)] .PC demonstrated acceptable and significant antitumor activity against SKOV-3 and OVCAR-3 human ovarian carcinoma cell lines as compared with that of cisplatin. The cytotoxicity of PC in normal cells was found quite less than that of cisplatin using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), ($^3$H)thymidine uptake and glucose consumption tests in rabbit renal proximal tubular cells, human renal cortical cells and tissues. In conclusion, PC is considered to be more selective cytotoxicity toward human ovarian cancer cells than normal human/rabbit kidney cells.

  • PDF

Antitumor Activity and Nephrotoxicity of the Novel Platinum(II) Coordination Complex (새로운 Platinum (II) Complex [Pt (II)(trans-d-dach)(DPPE)] $(NO_3)_2$의 항암효과 및 신독성에 관한 연구)

  • Jung Jee-Chang;Lee Moon-Ho;Chang Sung-Goo;Rho Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.103-114
    • /
    • 1995
  • Platinum coordination complexes are currently one of the most compounds used in the treatment of solid tumors. However, its use is limited by severe side effects such as renal toxicity. Our platinum-based drug discovery program is aimed at developing drugs capable of diminishing toxicity and improving antitumor activity. We synthesized new Pt (Ⅱ) complex analogue containing 1,2-diaminocyclohexane (dach) as carrier ligand and 1,2-bis(diphenylphosphino) ethane (DPPE) as a leaving group. Furthermore, nitrate was added to improve the solubility. A new series of [Pt(trans-ddach)(DPPE).$2NO_3(PC)$ was synthesized and characterized by their elemental analysis and by various spectroscopic techniques [infrared (IR), $^{13}carbon$ nuclear magnetic resonance (NMR)]. PC demonstrated acceptable antitumor activity aganist P388, L-1210 lymphocytic leukemia cells and SK=OV3 human ovarian adenocarcinoma cells, and significant. activity as compared with that. cisplatin. The toxicity of PC was found quite less than thar of cisplatin using MTT, $[^3H]$ thymidine uptake and glucose consumption tests in rabbit proximal tubule cells, human kidney cortical cells and human renal cortical tissues. Based on these results, this novel platinum compound represent a valuable lead in the development of a new anticancer chemotherapeutic agent capable of improving antitumor activity and low toxicity.

  • PDF

In Vitro Antitumor Activity and Nephrotoxicity of the Novel Platinum(II) Coordination Complex Containing Cis-dach/Diphosphine (새로운 Platinum(II)Complex ([Pt(II)(cis-dach)(DPPP)].$(NO_3)_2$의 항암효과 및 신독성)

  • Jung, Jee-Chang;Yim, Sung-Vin;Park, Seung-Joon;Chung, Joo-Ho;Ko, Kye-Chang;Chang, Sung-Goo;Rho, Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.93-102
    • /
    • 1996
  • Platinum coordination complexes are currently one of the most compounds used in the treatment of solid tumors. However, its use is limited by severe side effects such as nephrotoxicity. Our platinum-based drug discovery program is aimed at developing drugs capable of diminishing toxicity and broadening the clinical spectrum of activity of cisplatin. We synthesized new Pt(II) complex analogue containing 1,2-diaminocyclohexane (dach) as carrier ligand and 1,3-bis(diphenyl phosphino)propane (DPPP) as a leaving group. Furthermore, nitrate was added to improve the solubility. A new series of PC-1 [Pt(cis-dach) (DPPP)]. $2NO_3_2$ was synthesized and characterized by their elemental analysis and by various spectroscopic techniques [infrared (IR), $^{13}carbon$ nuclear magnetic resonance (NMR)]. PC-1 was demonstrated acceptable antitumor activity aganist SKOV -3, OVCAR-3 human ovarian adenocarcinomacells and significant activity as compared with that of cisplatin. The toxicity of PC-1 was found quite less than that of cisplatin using MTT, $[^3H]thymidine$ uptake and glucose consumption tests in rabbit proximal tubule cells, human kidney cortical cells and human renal cortical tissues. Based on these results, this novel platinum compound represent a valuable lead in the development of a new anticancer chemotherapeutic agent capable of improving antitumor activity and low toxicity.

  • PDF

Convolutive Cyclic Voltammetry Investigation of Dicarboximide Laser Dye at a Platinum Electrode in 1,2-Dichloroethane (1,2-Dichloroethane 내 백금 전극에서의 dicarboximide 레이저 염료에 대한 convolutive 순환 전압-전류법 연구)

  • Al-Bishri, Hassan M.;El-Mossalamy, E.H.;El-Hallag, Ibrahim;El-Daly, Samy
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.169-176
    • /
    • 2011
  • The electrochemical investigation of N,N-bis (2,5-di-tert-butylphenyl)-3,4,9,10 perylenebis (dicarboximide) laser dye have been carried out using cyclic voltammetry and convolution - deconvolution voltammetry combined with digital simulation technique at a platinum electrode in 0.1 mol/L tetrabutyl ammonium perchlorate (TBAP) in solvent 1,2 dichloroethane ($CH_2Cl-CH_2Cl$). The investigated dye was reduced via consumption of two sequential electrons to form radical anion and dianion (EE mechanism). In switching the potential to positive scan, the compound was oxidized by loss of two electrons, which were followed by a fast aggregation process ($EC_1EC_2$ mechanism). The electrode reaction pathway and the chemical and electrochemical parameters of the investigated compound were determined using cyclic voltammetry and convolutive voltammetry. The extracted electrochemical parameters were verified and confirmed via digital simulation method.

Study of the Electrochemical Redox Characteristics of Some Triazolopyrimidines

  • Maghraby, A.A. El;Elenien, G.M. Abou;Shehata, K.I.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 2007
  • An electrochemical study related to the redox characteristics of Ethyl-3-acetyl-6-methyl-1, 4-diphenyl-4, 3a-dihydro-1, 3, 4-triazolino[3, 4-a] pyrimidine-5-carboxylate ester and its derivatives (1a-f) and (2a-e) in nonaqueous solvents such as 1, 2-dichloroethane (DCE), dichloromethane (DCM), acetonitrile (AN), dimethylsulphoxide (DMSO) and tetrahydrofurane (THF) using $0.1\;mol\;dm^{-3}$ tetrabutylammonium perchlorate (TBAP) as a supporting electrolyte at platinum, glassy carbon and gold electrodes, has been performed using cyclic voltammetry (CV). Controlled potential electrolysis (CPE) is also carried out to elucidate the course of different electrochemical reactions through the separation and identification of the intermediates and final electrolysis products. The redox mechanism is suggested and proved. It was found that all the investigated compounds in all solvents are oxidized in a single irreversible one electron donating process following the well known pattern of the EC-mechanism to give a dimer. On the other hand, these compounds are reduced in a single irreversible one electron step to form the anion radical, which is basic enough to proton from the media forming the radical which undergoes tautomerization and then dimerization processes to give also another bis-compound through N-N linkage formation.

Clinical Features of Oxaliplatin Induced Hypersensitivity Reactions and Therapeutic Approaches

  • Bano, Nusrat;Najam, Rahila;Qazi, Faaiza;Mateen, Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1637-1641
    • /
    • 2016
  • Oxaliplatin, a third generation novel platinum compound is the most effective first line chemotherapeutic agent for colorectal cancer (CRC) in combination with 5FU and leucovorin. It is indicated for pancreatic, gastric and testicular cancers combined with bevacuzimab, capecitabine, irinotecan and other cytotoxic agents. However, moderate to severe hypersensitivity reactions (HSR) during or after oxaliplatin infusion usually require cessation of chemotherapy or substitution of the key therapeutic drug which largely interferes with improved patient prognosis. This mini- review showcases recent and accepted opinions/approaches in oxaliplatin induced HSR management. Physicians and oncologists have varying attitudes regarding the decision to rechallenge the patient after an HSR experience, efficacy of desensitization protocols, effectiveness and selection of drugs for premedication and possibilities of cross sensitivity to other platinum agents (e.g. carboplatin). A brief insight into underlying molecular mechanisms and clinical manifestations of oxaliplatin induced HSR is offered. We have also discussed the management of oxaliplatin induced HSR and risk stratification for a successful and complete chemotherapeutic plan.