Platinumbis(azido)dppf Compound: Preparation, Structure, and Reactivity to Isocyanides of $\left[\operatorname{Pt}(\mathrm{dppf})\left(\mathrm{N}_{3}\right)_{2}\right]\left(\mathrm{dppf}=\mathbf{1 , 1}{ }^{\prime}\right.$-Bis(diphenylphosphino)ferrocene)

Wan Sung Kim, Yong-Joo Kim, ${ }^{*}$ and Soon W. Lee
Department of (hemistry (BK2/). Singhywhatan Vnversity, Natural Science (ampus, Suwon $440-7+6$, Korea
${ }^{1}$ Department of (hemisty, Kangntng National Lhiversity, Kanghung 210-702, Korea
Received March 28, 2002

Key words: Isoey anides, dppe, Bis(azide), Platinum

The chemistry of the azido ($\mathrm{N}_{3}{ }^{-}$) ligand coordinated to late transition metals has received continual interests because of interesting magnetic. structural. and reactivity properties, including the l.3-dipolar cycloaddition to give heterocycles and the thermal or photochemical $\mathrm{N}-\mathrm{N}$ bond cleavage to give metal-imido ($\mathrm{M}=\mathrm{N}-\mathrm{R}$) compounds. ${ }^{1-5}$ In particular, group 10 metal-azido compounds containing phosphine or amine ligands have been intensely studied owing to their novel reactivity such as the fommation of metal nitrides or clusters. ${ }^{6-11}$

Recently. we have reported the preparations, structures. and properties of several azido or bis(azido) compounds of $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{ll})$ containing small tertiary phosphines. ${ }^{12-15}$ In particular, we found that cis-[M(N. $\left.\left.\mathrm{N}_{3}\right)_{2}\left(\mathrm{PR}_{3}\right)_{2}\right](\mathrm{M}=\mathrm{Pd}$ or $\mathrm{Pt}: \mathrm{PR}_{3}=\mathrm{PMe}_{3}$ or PEt_{3}) reacted with 2 equiv of isocyanide ($\mathrm{RNC}: \mathrm{R}=t$-Bu, $n-\mathrm{Bu}$. or cyclohexyl) to give trans$\left[\mathrm{M}\left(\mathrm{CN}_{4}(\mathrm{R})\right)_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$. Moreover. the reaction of $2.6-\mathrm{di}-$ methylphenyl isocyanide with cis-[Pd($\left.\left.\left.\mathrm{N}_{3}\right)\left(\mathrm{PR}^{\prime}\right)_{3}\right)\right]\left(\mathrm{PR}^{\prime}{ }_{3}=\right.$ $\mathrm{PMe}_{i}, \mathrm{PEt}_{i}$. or $\left.\mathrm{PMePl}_{2}\right)$ led to $\operatorname{trans}-\left[\operatorname{Pd}\left(\mathrm{CN}_{4}(\mathrm{R})\right)(\mathrm{N}=\mathrm{C}=\right.$ $\left.\left.\left.\mathrm{NC}_{6} \mathrm{H}_{3}-2,6-\mathrm{Me}_{2}\right)\left(\mathrm{PR}^{\prime}\right)_{2}\right)_{2}\right]$ with the liberation of N_{2}, which contains a C-coordinated tetrazolato ligand and a carbodiimido ligand. ${ }^{15}$ These results suggest that the reactivity of $\left[\mathrm{M}\left(\mathrm{N}_{i}\right)\left(\mathrm{PR}_{i}\right)_{2}\right](\mathrm{M}=\mathrm{Pd}$ or Pt) depends at least on the type of the organic isocyanide. As an extension of our work. we have investigated the preparation and reactivity of the platimum-bis(azido) compound containing the dppf ligand (l.l'-bis(diphenylphosphino)ferrocene). We employed this sterically demanding, chelating phosphine ligand (dppf) due to its streic bulk that might lead to the formation of desirable bis(carbodiimido) compounds rather than either bis(tetrazolato) compounds or those containing one tetrazolato and one carbodiimido. The dppf ligand is one of the efficient stabilizing agents for transition metal-catalyzed crosscoupling reactions as well as a redox-active ligand for electrochemical studies. ${ }^{16}$ Herein we report the preparation. structural characterization, and reactions with isocyanides of $\mathrm{Pt}(\mathrm{dppf})\left(\mathrm{N}_{3}\right)$)

Experimental Section

Unless otherwise stated. all reactions have been performed

[^0]with standard Schlenk line and cannula techuiques under argon. Air-sensitive solids were manupulated in a glove box filled with argon. $\left[\mathrm{PtCl}_{2}\left(\mathrm{SMe}_{2}\right)\right.$) $]$, 1.1'-bis(diphenylphosphino)ferrocene (dppf $=\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)$) , and $\left[\mathrm{PtCl}_{2}(\mathrm{dppf})\right]$ were prepared by literature methods. ${ }^{1-19}$
${ }^{1} \mathrm{H}$-. $\left.{ }^{13} \mathrm{C}_{\{ }^{1} \mathrm{H}\right\}$, and ${ }^{3]} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectra were recorded with a Varian Unity Inova 500 MHz spectrometer. IR spectra were recorded with a Nicolet 205 FTIR spectrophotometer. Elemental analyses were performed by the Korea Basic Science linstitute

Preparation of $\left[\operatorname{Pt}\left(\mathbf{N}_{3}\right)_{2}(\mathrm{dppf})\right]$ (1). Compound 1 was prepared in one of the following two methods.

Method 1. A mixture of $\left[\mathrm{PtCl}_{2}(\mathrm{dppf})\right](0.10 \mathrm{~g}, 0.122$ mmol) and $\mathrm{NaN}_{3}(0.016 \mathrm{~g}, 0.250 \mathrm{mmol})$ in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at room temperature for 48 h . The orange-brown solution was filtered and then evaporated under vacuum. The residue was washed with diethyl ether ($20 \mathrm{~mL} \times 2$) and hexane ($20 \mathrm{~mL} \times 2$). and then dried under vacuum to give 0.055 g of $1(0.067 \mathrm{mmol} .55 \%)$.

Method 2. $\left[\mathrm{PtCl}_{2}(\mathrm{dppf})\right](0.10 \mathrm{~g}, 0.122 \mathrm{mmol})$ and Mg (0.014 g .0 .35 nmol) in 30 mL of THF were cooled to $0^{\circ} \mathrm{C}$. After 10 min. neat $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiN}_{3}(0.2 \mathrm{~mL} .1 .47 \mathrm{mmol})$ was added slowly to this solution. The mixture was stirred at 50 ${ }^{\circ} \mathrm{C}$ in a water bath for 60 h . The orange-brown solution was filtered and then evaporated under vacum. The residue was washed with diethyl ether ($20 \mathrm{~mL} \times 2$) and hexane ($20 \mathrm{~mL} \times$ 2) and then dried under vacum to give 0.034 g of 1 (0.041 mmol, $3+\%$). ${ }^{l} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7 .+1-7.79(\mathrm{ml}, 20 \mathrm{H}), 4.21$ (d. 4 H$\left.).+39(\mathrm{~d}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}_{\{ }^{4} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 135.1-$ $129.1(I / h) .76 .4\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) .74 .4\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) .66 .6\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.76\left(J_{\text {T+P }}=3589 \mathrm{~Hz}\right) \mathrm{IR}: 2052 \mathrm{~cm}^{-1}\left(\mathrm{~N}_{3}\right)$. mp: $2+7-2+9^{\circ} \mathrm{C}$.

Preparation of $\left[\mathrm{Pt}\left(\mathrm{CN}_{+} \mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}(\mathrm{~d} p \mathrm{pf})\right]$ (2). To an orange-brown solution of compound $1(0.03 \mathrm{~g} .0 .036 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added neat cyclohexyl isocyanide $(6.0 \mu \mathrm{~L} .0 .0+8 \mathrm{mmol})$ at room temperature. The solution was stirred for 24 h . and the solvent was removed under vacuum. The residue was washed with diethyl ether ($20 \mathrm{~nL} \times 2$) and hexane ($20 \mathrm{~mL} \times 2$), and then dried to give 0.015 g of compound $2(0.016 \mathrm{mmol} .70 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 6.92-$ 8.21 (m. 20 H). +.38 (d. 2 H). +.76 (d. 2 H). 4.04 (d. 2 H) +.30 (d. 2 H). 0.56-1.67 (br, 10H. craclohexyl). 4.48 (ml .1 H , cyclohexyl). ${ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{i}\right): \delta 139.2-128.7$ (P / h), 75.8-71.5 (C5H4). 59.0 (cyclohexyl). 32.3 (cyclohexyl). 26.4
(cyclohexyl), 26.0 (cyclohexyl). ${ }^{31} \mathrm{P}\left\{{ }^{\mathrm{l}} \mathrm{H}_{3}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta\right.$ $10.92\left(J_{\text {PtP }}=2259 \mathrm{~Hz}\right) . \mathrm{mp}: 170-172{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): 2230$ $(\mathrm{NCN}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{5} \mathrm{~N}_{8} \mathrm{P}-\mathrm{FePt}$ C. $54.81: \mathrm{H}$, 4.75 ; N. 10.65. Found: C. 55.12 ; H. 5.18: N, 10.32 .

Preparation of $\left[\mathbf{P t}\left(\mathbf{C N}_{\mathbf{t}}-t-\mathrm{Bu}\right)_{z}(\mathrm{~d} p \mathrm{pf})\right]$ (3). This compound was prepared similar to compound 2. Compound 1 (0.03 g. 0.036 mmol) was treated with excess tert-butyl isocyanide ($0.1 \mathrm{~mL}, 0.88+\mathrm{mmol}$) to give 0.028 g of compound 3 (0.028 mmol. 78%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.70-8.27(\mathrm{~m} .20 \mathrm{H}), 4.40$ (d. 2 H), 4.87 (d. 2 H), $3.8+(\mathrm{d} .2 \mathrm{H}) .4 .24$ (d. 2 H), 1.18 (s. 9 H , t-Bu). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 153.9\left(\mathrm{CN}_{4}, J=27.5 \mathrm{~Hz}\right)$, $152.8\left(C \mathrm{~N}_{+} J=27.5 \mathrm{~Hz}\right)$. 138.3-128.6 ($\mathrm{I} / 7$), 77.9-72.7 $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) .59 .4\left(\mathrm{CMe}_{3}\right) .30 .6\left(\mathrm{Cl}_{1} e_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):$ $\delta 10.80\left(J_{\text {PTP }}=2295 \mathrm{~Hz}\right) . \mathrm{mp}: 169-171^{\circ} \mathrm{C}$. $\mathrm{lR}(\mathrm{KBr}): 2236$ $(\mathrm{NCN}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{P}_{2} F \mathrm{FePt}: \mathrm{C} .52 .87: \mathrm{H}$, 4.62: N. 11.21 . Found: C. 52.78 ; H. 4.74 : N. 11.36.

X-ray structure determination. All X-ray data were collected with the use of a Siemens P+ diffractometer equipped with a Mo X-ray tube and a graphite-crystal monochromator. Details on crystal and intensity data are given in Table 1 . The orientation matrix and unit-cell

Table 1. X-ras data collection and structure refinement

	1	$2 \cdot 2 \mathrm{CHCl}_{3}$	$3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Fommua	$\mathrm{C}_{3+1} \mathrm{I}_{28} \mathrm{~N}_{6}{ }^{-}$	$\mathrm{Cs}_{50} \mathrm{Its3}_{5} \mathrm{~N}_{8}-$	$\mathrm{C}_{4} \mathrm{SI}_{48} \mathrm{NS}_{8}$
	$\mathrm{P}_{2} \mathrm{Fc} \mathrm{Pl}^{\text {d }}$	$\mathrm{P}_{2} \mathrm{Cl}_{4} \mathrm{FcPt}$	$\mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{FcPt}$
fiw	833.50	1290.58	1084.69
temperature. K	296(2)	$296(2)$	295 (2)
crystal system	triclinic	monoclinic	triclinic
space group	$P \overline{1}$	$P 2_{1 / C}$	$P \overline{1}$
a. A	10.957(1)	15.537(2)	10.503(1)
b. A	12.377(1)	$16.806(2)$	11.628(1)
c. \AA	15:236(1)	20.591(3)	20.823(1)
r. dcg	$107.776(7)$		76.472(7)
β. dcg	$94.098(7)$	$100.23(1)$	80.854(6)
$\gamma \mathrm{de}$	$114.408(6)$		67.114(8)
$1 . A^{*}$	1744.5(3)	5291(1)	2271.4(4)
Z	2	4	2
$\mathrm{d}_{\text {cald }} \mathrm{g} \mathrm{cm}^{-i}$	1.587	1.620	1.586
[. mm^{-1}	4.544	3.322	3.625
$T_{\text {mu }}$	0.2296	0.0848	0.0593
$T_{\text {ma }}$	0.6922	0.5396	0.1143
F(000)	816	2576	1084
No. of reflections measured	6293	8538	8387
No. of reflections unique	5972	8280	7946
No. of reflections with $I: 2 \sigma(I)$	5557	5717	7412
No. of parameters refined	398	624	533
2θ range (${ }^{\circ}$)	3.5-50.0	3.5-50.0	3.5-50.0
scan type	ω	ω	ω
scan speed	variable	variable	variable
GOF (goodncss-ot-fit on F^{-})	1.077	0.990	1.049
Max.. min. in $\Delta p\left(\mathrm{c}^{A^{-}}\right)$	$\begin{aligned} & 2.200 \\ & -2.222 \end{aligned}$	$\begin{aligned} & 0.665 \\ & -0.662 \end{aligned}$	$\frac{1.225}{-0.746}$
R	0.0425	0.0533	0.0297
$w R_{2}{ }^{\text {a }}$	0.1079	0.0977	0.0746

parameters were detemined by least-squares analyses of the setting angles of 28 (for 1). 31 (for $2 \cdot 2 \mathrm{CHCl}_{3}$), or 23 (for $3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$) reflections in the range of $15.0^{\circ}<2 \theta<25.0^{\circ}$. Three check-reflections were measured every 100 reflections throughout data collection and showed no noticeable variations in intensity. Intensity data were corrected for Lorenz and polarization effects. Decay corrections were also made. The intensity data were empirically corrected for absorption with y-scan data. All calculations were carried out with the use of SHELXTL programs. ${ }^{24}$

All crystal structures were solved by direct methods. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms in the two co-crystallized chloroform molecules in $2 \cdot 2 \mathrm{CHCl}_{3}$ were not located. All remaining hydrogen atoms were generated in ideal positions and refined in a riding model.

Crystallographic data for the structural analysis have been deposited at the Cambridge Crystallographic Data Center, CCDC No. 182496 for 1.182495 for $2 \cdot 2 \mathrm{CHCl}_{3}$, and 182494 for $3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Copies of this information may be obtained free of charge from: The director, CCDC. 12 Union Road, Cambridge. CB2 lEZ, UK (Fax: +4+-1223-336-033; E-mail: depositorcedc.camac.uk or htp: www.ccalc.cam. ac. $u k$).

Results and Discussion

Preparation of $\left[\operatorname{Pt}\left(\mathbf{N}_{3}\right)_{2}(\mathbf{d p p f})\right]$ (1). The platinum-bis(azido)-dppf compound (1) can be prepared in two ways. In dichloromethane at room temperature. $\left[\mathrm{PtCl}_{2}(\mathrm{dppf})\right]$ reacts with an inorganic azide $\left(\mathrm{NaN}_{3}\right)$ to give compound 1 (eq 1). In a refluxing THF the reaction of $\left[\mathrm{PtCl}_{-}(\mathrm{dppf})\right]$ with an organic azide ($\mathrm{Me}_{3} \mathrm{SiN}_{3}$) in the presence of Mg also leads to the formation of $\mathbf{1}$. However. the latter reaction requires more vigorous conditions (the reducing agent Mg . the refluxing THF, and a longer reaction time) and gave a lower yield.

Interestingly, the platinum-bis(azido) compound $\mathbf{1}$ is thermally stable in the solid state and in solution. For example. 1 melts at $2+7-2+9^{\circ} \mathrm{C}$ without the liberation of N_{2}. The IR spectrum of 1 shows a strong absorption band at $2052 \mathrm{~cm}^{-1}$ corresponding to the azido group. On treatment with excessive HCl in diethyl ether, compound 1 is converted back to the starting material (eq 2).

$$
\begin{equation*}
1+\mathrm{HCl}\left(\mathrm{in} \mathrm{Et}_{2} \mathrm{O}\right) \rightarrow\left[\mathrm{PtCl}_{2}(\mathrm{dppf})\right] \tag{2}
\end{equation*}
$$

Structure of compound 1 The molecular structure of 1 is shown in Figure 1. which displays two azido $\left(\mathrm{Na}_{3}{ }^{-}\right)$and one

Figure 1. ORTEP drawing of 1, showing the atom-labeling scheme and 50% probability themal ellipsoids. Selected bond distances (Λ) and bond angles $\left(^{\circ}\right): \mathrm{Pt} 1-\mathrm{N} 12.071(6), \mathrm{Pt}-\mathrm{N} 42.079(5)$. PtIP2 2.259(2), Pt1-P1 2.263(2), NI-N2 1.174(9), N2-N3 1.151(10), N4-N5 1.187(9). N5-N6 1.129(11): N1-P11-N4 87.4(2), P2-P11Pl 99.49(5), N2-N1-Pll 121.0(5). N3-N2-N1 174.9(8), N5-N4Pt $1118.7(5)$, N6-N5-N4 174.04).
dppf ligands. The coordination sphere of the Pt metal can be described as a distorted square plane. The equatorial plane, defined by Nl . Nt. Pl. P2, and Ptl. is roughly planar with the average atomic displacement of 0.1551 A . The bond angles $\left(174.9(8)^{\circ}\right.$ and $\left.17+.0(9)^{\circ}\right)$ of $\mathrm{N}-\mathrm{N}-\mathrm{N}$ in the azio ligand are consistent with the range found for coordinated azido ligands ($173-180^{\circ}$). ${ }^{21}$

The two Cp rings are not perfectly parallel but twisted from each other with the dihedral angle of $4.6(3)^{\circ}$. The torsion angle of $\mathrm{Pl}-\mathrm{Cl}-\mathrm{C} 6-\mathrm{P} 2$ is $3+.1(3)^{\circ}$. indicating that the two Cp rings adopt a gauche (or staggered) conformation. For comparison the ideal torsion angles for the gauche and eclipsed conformations are 36° and 72°. respectively: Both distances of $\mathrm{Fe}-\mathrm{Ct}$ (Ct : a centroid of the Cp ring) are $1.6+1 \mathrm{~A}$. and the angle of the $\mathrm{Ctl}-\mathrm{Fe}-\mathrm{Ct} 2(\mathrm{Ctl}$: $\mathrm{C} 1-\mathrm{C} 5: \mathrm{Ct} 2: \mathrm{C} 6-\mathrm{Cl} 10$) is 178.86°. The bite angle of $\mathrm{Pl} \cdots \mathrm{Pt} \cdots \mathrm{P} 2$ is $61.87(4)^{\circ}$, and the distance of $\mathrm{Pl} \cdots \mathrm{P} 2$ is $3.451(2)$ A. The above bonding parameters within a ferrocene moiety are consistent with those found in octahedral platimum compounds in which the dppf group acts as a ligand. ${ }^{16}$ The distance of $\mathrm{Pt} \cdots \mathrm{Fe}$ is $+.222(1) \mathrm{A}$. which clearly rules out direct interactions between the two metals.

Reactions of 1 with isocyanides. When $\left[\mathrm{PtCl}_{-}(\mathrm{dppf})\right]$ is directly treated with isocyanide. no reaction occurs. On the other hand. the platimum-bis(azido) compound 1 reacts with tert-butyl and cyclohexyl isocyanides to give sterically congested compounds (2 and 3), which contain two C bonded tetrazolate rings and one dppf ligand (eq 3). This reaction is somewhat umusual because the reaction might have given either a mono(carbodimido) or even a bis(carbodiimido) compound to relieve the steric hindrance in the product. Analogous cycloaddition reactions of platinumbis(azido) compounds with isocyanides were previously studied by Beck and co-workers. ${ }^{2}$ According to their
works, the reactions of compounds of $\mathrm{Pd}(\mathrm{II}), \mathrm{Cu}(\mathrm{I}) . \mathrm{Ag}(\mathrm{I})$, and $\mathrm{Au}(\mathrm{l})$ having temninal or bridging azido ligands with CS_{2} or $\mathrm{CF}_{3} \mathrm{CN}$ gave the compounds containing the V -coordinated tetrazolate ring. On the other hand. as stated above, cis- $\left[\mathrm{M}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PR}_{3}\right)_{=}\right]$reacted with isocyanide to give either $\operatorname{trans}-\left[\mathrm{M}\left(\mathrm{CN}_{4}(\mathrm{R})\right)_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ or trans- $\mathrm{Pd}\left(\mathrm{CN}_{4}(\mathrm{R})\right)(\mathrm{N}=\mathrm{C}=\mathrm{N}-$ $\left.\mathrm{R})\left(\mathrm{PR}_{3}\right)=\right]$ with the change in the configuration from cis to trans. ln addition, cis-[$\mathrm{M}\left(\mathrm{N}_{2}\right)_{2}$ (dppe) $]$ (dppe $=\mathrm{Pl}_{2} \mathrm{PCH}_{2}-$ $\mathrm{CH}_{3} \mathrm{PPh}_{-}$). which contains the chelating bidentate ligand (dppe) similar to compound 1. reacted with 2.6 -dimethylpheryl isocyanide to a bis(carbodimido) compound. cis-$\left[\mathrm{M}\left(\mathrm{N}=\mathrm{C}=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Me}_{2}\right) \mathrm{I}_{2}(\mathrm{dppe})\right]^{15} \quad$ Considering the steric bulk of the dppe and dppf lignads, it might be deduced that the steric factor does not play a dominant role in deriving the reaction to form bis(carbodiimido) compounds in our system.

Figure 2. ORTEP drawing of 2. Selected bond distances (A) and bond angles (${ }^{\circ}$) $\mathrm{Pt} 1-\mathrm{C} 422.058(8)$, $\mathrm{Pt} 1-\mathrm{C} 352.064(9)$) $\mathrm{PtI}-\mathrm{PI}$ 2.332(2). Ptl-P2 2.342(2), N1-C.35 1.35(1): N1-N2 1.36(1), NIC36 1.46(1). N2-N3 1.28(1). N3-N4 1.36(1). N4-C35 1.33(1). N5-C42 1.36(1). N5-N6 1.36(1). N5-C43 1.46(1). N6-N7 1.27(1), N7-N8 1.36(1), N8-C42 1.32(1): $\mathrm{C} 42-\mathrm{Ptl}-\mathrm{C} 3584.7(3)$ Pl-Ptl-P2 101.43(8), C35-N1-N2 108.9(7), C35-NI-C36 $129.6(7), \mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 36$ 122.1(7). N3-N2-N1 166.1(7). N2-N3N4 111.4(8). C35-N4-N3 106.3(8). C42-N5-N6 167.7(7). C42-NS-C43 130.3(7), N6-NS-C43 121.9(7), N7-N6-N5 106.5(8): N6-N7-N8 112.3(8), C42-N8-N7 $105.1(8)$.

Structures of 2 and 3. The molecular structures of 2 and 3 are shown in Figures 2 and 3, respectively. Each compound has two (${ }^{-}$-bonded tetrazolate rings and one bidentate dppf ligand. The coordination sphere of each Pt can be described as distorted square-planar. The equatorial plane. defined by two tetrazolate-ring carbon atoms. two phosphonus atoms, and the Pt metal, is relatively planar with the average atomic displacement of 0.073 A for 2 or $0.00+\mathrm{A}$ for 3.

Two heterocyclic five-membered tetrazolate rings in each compound are essentially planar with the average atomic displacement of $0.001-0.008 \mathrm{~A}$. These two rings are mutually perpendicular with the dihedral angle of $79.1(3)^{\circ}$ (2) or $76.2(2)^{\circ}$ (3). and are also virtually perpendicular to the equatorial plane with the dihedral angles of $76.5(3)^{\circ}-$ $85.5(2)^{\circ}$. The substituents [cyclohexyl (2) or tert-butyl (3)] on the two tetrazolate rings seem to orient as far as possible. The relative orientation of the substituents probably result from the steric congestion due to the streically demanding tetrazolato ligands formed in the reaction.

The two Cp rings in compounds 2 and 3. as in compound 1. are twisted from each other with the dihedral angle of $5.2(4)^{\prime \prime}(2)$ or $4.4(4)^{\circ}(3)$. As expected. the conformation of the two Cp rings in the dppf ligand severely deviates from the gauche conformation with the $\mathrm{Pl}-\mathrm{Cl}-\mathrm{C} 6-\mathrm{P} 2$ torsion

Figure 3. ORTEP drawing of 3. Sclected bond distances (\AA) and bond angles (${ }^{\circ}$): Pll-C.40 2.066(4), Ptl-C35 2.067(4), Ptl-P2 $2.342(1), \mathrm{Pt} 1-\mathrm{P} 12.351(1), \mathrm{N} 1-\mathrm{C} 35$ 1.361(5), N1-N2 1.365(5), $\mathrm{N} 1-\mathrm{C} 361.506(5), \mathrm{N} 2-\mathrm{N} 31.289(6)$, N.3-N4 1.361(5), N4-C35 1.330(5), N5-(.40 1.356(5), N5-N6 1.374(5), N5-C41 1.495(6). N6-N7 $1.295(6)$, N7-N8 1.366(5), N8-C40 $1.345(5):$ C40-P1l$\mathrm{C} .35852(2), \mathrm{P} 2-\mathrm{Pt} 1-\mathrm{P} 1101.59(3), \mathrm{C} 35-\mathrm{N} 1-\mathrm{N} 2108.5(3), \mathrm{C} 35-$ $\mathrm{N} 1-\mathrm{C} 36135.5(3), \mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 36115.9(3), \mathrm{N} 3-\mathrm{N} 2-\mathrm{N} 1 \quad 106.9(3)$, $\mathrm{N} 2-\mathrm{N} 3-\mathrm{N} 4 \quad 110.3(3), \quad \mathrm{C} 35-\mathrm{N} 4-\mathrm{N} 3 \quad 107.7(3), \quad \mathrm{C} 40-\mathrm{N} 5-\mathrm{N} 6$ 108.8(4), C40-N5-C41 135.6(3), N6-N5-C41 $115.5(3)$, N7-N6$\mathrm{N} 5106.4(4), \mathrm{N} 6-\mathrm{N} 7-\mathrm{N} 8110.8(4), \mathrm{C} 40-\mathrm{N} 8-\mathrm{N} 7196.9(4)$.
angle of $51.4(6)^{\circ}$ or $52.7(3)^{\circ}$. The $\mathrm{Fe}-\mathrm{Ct}$ distances are 1.657 A and 1.661 A (2) or 1.648 A and 1.649 A (3). The $\mathrm{Ctl}-\mathrm{Fe}-$ Ct 2 ($\mathrm{Ctl}: \mathrm{Cl}-\mathrm{C} 5$: $\mathrm{Ct} 2: \mathrm{C} 6-\mathrm{Cl} 10$) angle is 169.13° (2) or $179.51^{\circ}(3)$. The $P \cdots F e \cdots P$ bite angle is $64.53(6)^{\circ}(2)$ or 65.10 (3) (3), and the P1 $\cdots \mathrm{P} 2$ distance is $3.617(3) \mathrm{A}(2)$ or 3.637(1) A (3). The long Pt $\cdots \mathrm{Fe}(4.3+4$ (1) or A (2) 4.331 (1) A (3)) distance indicates no direct interactions between the two metals.

In summary. we have prepared a platinum-bis(azido)dppf compound. $\left[\operatorname{Pt}\left(\mathrm{N}_{2}\right)_{2}(d p p f)\right]$, which was treated with isocyanide ($\mathrm{RNC}: \mathrm{R}=t-\mathrm{Bu}$ or $\mathrm{C}_{6} \mathrm{H}_{11}$) to give a bis(terazolato) compound, $\left[\mathrm{Pt}\left(\mathrm{CN}_{4}-\mathrm{R}\right)_{2}(\mathrm{dppf})\right]$. All compounds have been structurally characterized by X-ray diffraction.

Acknowledgment. This work is based on research sponsored by the Korea Research Foundation Grant (KRF-2001-015-DP0262).

References

1. Chisholm, M. I.: Rothwell, I. P. In Comprehensive C'oordination Chemistry: Wilkinson, G.: Gillard. R. D.: McCleverty, J. A., F.ds.: Pergamon: Oxtord, Fingland. 1987: Vol. 2, p 225.
2. Ribas. J.: Escuer. A.: Monfort. M.: Vincente. R.: Cortes. R.: Lezama. L.: Rojo. I. Coord. Chem. Rev, 1999. 193-195. 1027.
3. Strahle. J. Comments Inorg. Chem. 1985. t. 295.
4. Wigley, D. Г. Prog. Horg (hem. 1994, 42, 239.
5. Dori, 7.: 7iolo. R. F. (hem. Rev: 1973. 73. 247.
6. Becalskia, A.: Batehelor. R. J.: Finstein. F. W. B.: Fill. R. H.: P'almer. B. J. fhorg. Chem. 1992. 31. 3118.
7. Klein. H.: Haller. S.: König. H.: Dartiguenave. M.: Dariguenave. Y.: Ment. M. J. Am. Chem. Soc: 1993. 115. 4673.
8. Alibrandi. G.: Scolaro, M. L..: Minniti. D.: Romen, R. Horg. (Them. 1990. 29. 3467.
9. Strahle, J. J. Orgonomet. (hem. 1995, 488. 15
10. Breuer. M.: Strahle. J. Z. Anorg .t/lg. Chem. 1993. 619. 156t.
11. Laupp. M.: Strahle. J. Angen. Chem. Im. Ed. Engl. 1994. 33. 207.
12. Kim. Y.-J.: Kim. D.-H.: Lee. J.-Y.: Lee. S. W. J. Organomet. (hem 1997. 538. 189.
13. Kim, Y.-J.: Kwak, Y.-S.: I.ce. S. W. .J. Orgamontet. (Hem. 2000. 603,152
14. Kim. Y.-J.: Joo. Y.-S.: Kwak. Y.-S.: Han. W. S.: Lee. S. W. Bufl. Koneom (hem. Soc: 2001. 22. 647.
15. Kim. Y.-I: Kwak. Y.-S.: Joo. Y.-S.: Lee. S. W. J. Chem. Soc., Dalton Trons 2002. 144.
16. Gan, K.-S.: Hor. T. S. A. In Femocemes: Togni. A., Ilayashi, T., Fds: VCII: New York. 1995; pp 3-104.
17. Hill. G. S.: Irwin. M. J.: Levy. C. J.: Rendina. L. M.: Puddephatt. R. J. $/$ horg. Symh 1998. 32. 149.
18. Lang. R.-J.: van Soolingen. J.: Verkruijsse. H. D.: Brandsma. L. Swh ('ommmm 1995, 25. 2989.
19. Whitesides, G. M.: Gaaseh, I. Г.: Steddronsty', F.. R. ./. Im. Chem. Soc. 1972, 94, 5258
20. Bruker. SHELLTL, Struchure Detemination Soffore Programs. Bruker Analytical X-ray Instruments Inc:: Madison. Wisconsin. USA. 1997.
21. Palenik, G. II. Icta (rywe 1964. 17. 360.
22. Kreutzer, P.: Fithe, J.: Beck, W. Chem Bet: 1983. /t6. 2691
23. Wenter, K.; Beck, W. Chem. Ber: 1972, 105, 3209.
24. Beck. W.: Fehlhammer. W. P. Chem. Ber 1971. 104. 1816.
25. Beck. W.: Fehlhammer. W. P.: Bock. H. Chem. Ber. 1969. Io2. 3637.
26. Beek, W:, Fchlhammer, W. P. Ingew. (Them. Int. Fal. Figl. 1967. 6. 169 .

[^0]: *Corresponding author. Tel: $+82-31-290-7066$. Fax: $+82-31-290-$ 7075: F-mail: swlee \boldsymbol{c} ehem.skkuach

