• Title/Summary/Keyword: platform-based SoC design

Search Result 57, Processing Time 0.02 seconds

Analysis of Verification Methodologies Based on a SoC Platform Design

  • Lee, Je-Hoon;Kim, Sang-Choon
    • International Journal of Contents
    • /
    • v.7 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • In a SoC (system-on-chip) design, a design complexity is a big bottleneck. In order to overcome the design complexity, platform based design method is widely adopted for designers. Most complex SoCs need a heterogeneous design development environment for hardware and software co-design. In this paper, we discuss about some kinds of verification approaches with platform based design methodology at various abstraction levels of SoC design. We separate the verification process to two steps according to the different levels of verification. We employ a flexible SoC design environment to support simultaneous hardware and software development. We demonstrate the verification strategy of a target SoC design, IEEE 802.11a WLAN SoC.

The Development of Reusable SoC Platform based on OpenCores Soft Processor for HW/SW Codesign

  • Bin, Young-Hoon;Ryoo, Kwang-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.376-382
    • /
    • 2008
  • Developing highly cost-efficient and reliable embedded systems demands hardware/software co-design and co-simulation due to fast TTM and verification issues. So, it is essential that Platform-Based SoC design methodology be used for enhanced reusability. This paper addresses a reusable SoC platform based on OpenCores soft processor with reconfigurable architectures for hardware/software codesign methodology. The platform includes a OpenRISC microprocessor, some basic peripherals and WISHBONE bus and it uses the set of development environment including compiler, assembler, and debugger. The platform is very flexible due to easy configuration through a system configuration file and is reliable because all designed SoC and IPs are verified in the various test environments. Also the platform is prototyped using the Xilinx Spartan3 FPGA development board and is implemented to a single chip using the Magnachip cell library based on $0.18{\mu}m$ 1-poly 6-metal technology.

Pipelined Scheduling of Functional HW/SW Modules for Platform-Based SoC Design

  • Kim, Won-Jong;Chang, June-Young;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.533-538
    • /
    • 2005
  • We developed a pipelined scheduling technique of functional hardware and software modules for platform-based system-on-a-chip (SoC) designs. It is based on a modified list scheduling algorithm. We used the pipelined scheduling technique for a performance analysis of an MPEG4 video encoder application. Then, we applied it for architecture exploration to achieve a better performance. In our experiments, the modified SoC platform with 6 pipelines for the 32-bit dual layer architecture shows a 118% improvement in performance compared to the given basic SoC platform with 4 pipelines for the 16-bit single-layer architecture.

  • PDF

Virtual Platform based on OpenRISC (OpenRISC 기반의 버츄얼 플랫폼)

  • Jang, HyeongUk;Lee, Jae-Jin;Byun, Kyungjun;Eum, Nakwoong;Jeong, Sangbae
    • Smart Media Journal
    • /
    • v.3 no.4
    • /
    • pp.9-15
    • /
    • 2014
  • A virtual platform models a processor core and the peripheral devices constituting the SoC in software. Major companies utilize a variety of platforms for product development with optimal SW+SoC integrated system architecture design and IP reuse based Top-Down design flow using a virtual platform. In this paper, we propose a virtual platform based on OpenRISC, an open source RISC based core. The proposed virtual platform supports high speed emulation of approximately 20 MIPS using DBT (Dynamic Binary Translation).

Design and Implementation of Magnetic Induction based Wireless Underground Communication System Supporting Distance Measurement

  • Kim, Min-Joon;Chae, Sung-Hun;Shim, Young-Bo;Lee, Dong-Hyun;Kim, Myung-Jin;Moon, Yeon-Kug;Kwon, Kon-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4227-4240
    • /
    • 2019
  • In this paper, we present our proposed magnetic induction based wireless communication system. The proposed system is designed to perform communication as well as distance measurement in underground environments. In order to improve the communication quality, we propose and implement the adaptive channel compensation technique. Based on the fact that the channel may be fast time-varying, we keep track of the channel status each time the data is received and accordingly compensate the channel coefficient for any change in the channel status. By using the proposed compensation technique, the developed platform can reliably communicate over distances of 10m while the packet error rate is being maintained under 5%. We also implement the distance measurement block that is useful for various applications that should promptly estimate the location of nearby nodes in communication. The distance between two nodes in communication is estimated by generating a table describing pairs of the magnetic signal strength and the corresponding distance. The experiment result shows that the platform can estimate the distance of a node located within 10m range with the measurement error less than 50cm.

A Platform-Based SoC Design of a 32-Bit Smart Card

  • Kim, Won-Jong;Kim, Seung-Chul;Bae, Young-Hwan;Jun, Sung-Ik;Park, Young-Soo;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.510-516
    • /
    • 2003
  • In this paper, we describe the development of a platform-based SoC of a 32-bit smart card. The smart card uses a 32-bit microprocessor for high performance and two cryptographic processors for high security. It supports both contact and contactless interfaces, which comply with ISO/IEC 7816 and 14496 Type B. It has a Java Card OS to support multiple applications. We modeled smart card readers with a foreign language interface for efficient verification of the smart card SoC. The SoC was implemented using 0.25 ${\mu}m$ technology. To reduce the power consumption of the smart card SoC, we applied power optimization techniques, including clock gating. Experimental results show that the power consumption of the RSA and ECC cryptographic processors can be reduced by 32% and 62%, respectively, without increasing the area.

  • PDF

ViP: A Practical Approach to Platform-based System Modeling Methodology

  • Um, Jun-Hyung;Hong, Sung-Pack;Kim, Young-Taek;Chung, Eui-Young;Choi, Kyu-Myung;Kong, Jeong-Taek;Eo, Soo-Kwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.89-101
    • /
    • 2005
  • Research on highly abstracted system modeling and simulation has received a great deal of attention as of the concept of platform based design is becoming ubiquitous. From a practical design point of view, such modeling and simulation must consider the following: (i) fast simulation speed and cycle accuracy, (ii) early availability for early stage software development, (iii) inter-operability with external tools for software development, and (iv) reusability of the models. Unfortunately, however, all of the previous works only partially addresses the requirements, due to the inherent conflicts among the requirements. The objective of this study is to develop a new system design methodology to effectively address the requirements mentioned above. We propose a new transaction-level system modeling methodology, called ViP (Virtual Platform). We propose a two-step approach in the ViP method. In phase 1, we create a ViP for early stage software development (before RTL freeze). The ViP created in this step provides high speed simulation, lower cycle accuracy with only minor modeling effort.(satisfying (ii)). In phase 2, we refine the ViP to increase the cycle accuracy for system performance analysis and software optimization (satisfying (i)). We also propose a systematic ViP modeling flow and unified interface scheme based on utilities developed for maximizing reusability and productivity (satisfying (ii) and (iv)) and finally, we demonstrate VChannel, a generic scheme to provide a connection between the ViP and the host-resident application software (satisfying (iii)). ViP had been applied to several System-on-a-chip (SoC) designs including mobile applications, enabling engineers to improve performance while reducing the software development time by 30% compared to traditional methods.

A Design of Multimedia Application SoC based with Processor using BTB (BTB를 이용한 프로세서 기반 멀티미디어 응용 SoC 설계)

  • Jung, Younjin;Lee, Byungyup;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.397-400
    • /
    • 2009
  • This paper describes ASIC design of Multimedia application SoC platform based RISC processor with BTB(Branch Target Buffer). For performance enhancement of platform, we use a simple branch prediction scheme, BTB structure, that stores a target address for branch instruction to remove pipeline harzard. Also, the platform includes a number of peripheral such as VGA controller, AC97 controller, UART controller, SRAM interface and Debug interface. The platform is designed and verified on a Xilinx VERTEX-4 FPGA using a number of test programs for functional tests and timing constraints. Finally, the platform is implemented into a single ASIC chip which can be operated at 100MHz clock frequency using the Chartered 0.18um process. As a result of performance estimation, the proposed platform shows about 5~9% performance improvement in comparison with the previous SoC Platform.

  • PDF

플랫폼을 기반으로 하는 SoC 설계 방법

  • Choe, Gyu Myeong;Jeong, Ui Yeong;Eom, Jun Hyeong;Eo, Su Gwan
    • The Magazine of the IEIE
    • /
    • v.30 no.9
    • /
    • pp.28-28
    • /
    • 2003
  • SoC(System on Chip)의 발전은 현재 널리 쓰이는 기존의 설계 방법론으로는 해결될 수 없는 여러 가지 문제들을 생성하고 있다. 제품의 복잡도는 급격히 증가하는 반면 제품 수명은 지속적으로 감소하고 있으며, 기존 구현 기술의 향상만으로는 해결하기 쉽지 않은 VDSM (Very Deep Sub-Micron) 문제 또한 새로이 도출되고 있는 실정이다. 이러한 문제들은 적기에 시장에 제품을 출시하는 데에 많은 어려움을 끼치게 되기 때문에, 기존의 방법론을 뛰어 넘는 새로운 설계 방법론을 위한 많은 연구들이 활발히 진행되고 있다. 이러한 방법론 중 효율적인 한 방안으로 "재사용"의 개념이 대두되고 있으며, platform-based design은 이러한 재사용의 개념을 SoC 설계에 효율적으로 적용할 수 있는 방법으로 많은 관심을 받고 있다. 본 논문은 이러한 platform-based design의 최근 동향 및 현재 삼성전자에서 추진하고 있는 platform-based design에 대해 기술한다.