• 제목/요약/키워드: platelet adhesion

검색결과 86건 처리시간 0.023초

불소화된 폴리우레탄의 기계적 물성과 혈소판 점착특성에 관한 연구 (A Study for Mechanical and Platelet Adhesion Properties of Fluorinated Polyurethanes)

  • 김형중
    • 폴리머
    • /
    • 제25권3호
    • /
    • pp.343-348
    • /
    • 2001
  • Perfluorinated polyether diol(Fomblin ZDOL$ZDOL^{(R)}$)과 4,4'-diphenyl methane diisocyanate(MDI)로부터 합성된 불소화된 폴리우레탄 탄성체의 기계적 성질과 혈소판 점착 특성을 연구하였다. Fomblin 함량과 혼합 사용된 polyether polyol의 종류에 따른 기계적 성질의 검토를 인장실험 및 dynamic mechanical analysis를 통해 행하였다. 또한 혈소판 점착실험을 통해 불소화된 폴리우레탄 탄성체의 혈액적합성을 평가하였다. 기계적 물성은 혼합된 polyether polyol의 종류와 함량에 영향을 받았고, 혈소판 점착은 모든 불소화된 폴리우레탄에서 불소화 함량의 증가에 따라 감소하였다.

  • PDF

Platelet Shape Changes and Cytoskeleton Dynamics as Novel Therapeutic Targets for Anti-Thrombotic Drugs

  • Shin, Eun-Kyung;Park, Hanseul;Noh, Ji-Yoon;Lim, Kyung-Min;Chung, Jin-Ho
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.223-230
    • /
    • 2017
  • Platelets play an essential role in hemostasis through aggregation and adhesion to vascular injury sites but their unnecessary activation can often lead to thrombotic diseases. Upon exposure to physical or biochemical stimuli, remarkable platelet shape changes precede aggregation or adhesion. Platelets shape changes facilitate the formation and adhesion of platelet aggregates, but are readily reversible in contrast to the irrevocable characteristics of aggregation and adhesion. In this dynamic phenomenon, complex molecular signaling pathways and a host of diverse cytoskeleton proteins are involved. Platelet shape change is easily primed by diverse pro-thrombotic xenobiotics and stimuli, and its inhibition can modulate thrombosis, which can ultimately contribute to the development or prevention of thrombotic diseases. In this review, we discussed the current knowledge on the mechanisms of platelet shape change and also pathological implications and therapeutic opportunities for regulating the related cytoskeleton dynamics.

Mechanisms of Platelet Adhesion on Elastic Polymer Surfaces: Protein Adsorption and Residence Effects

  • Insup Noh;Lee, Jin-Hui
    • Macromolecular Research
    • /
    • 제9권4호
    • /
    • pp.197-205
    • /
    • 2001
  • Platelet adhesion onto elastic polymeric biomaterials was tested in vitro by perfusing human whole blood at a shear rate of 100 sec$\^$-1/ for possible verification of mechanisms of initial platelet adhesion perfusion of blood on the polymeric substrates was performed after treatments either with or without pre-adsorption of 1% blood plasma, and either with or without residence of the protein-preadsorbed substrate in phosphate buffered solution. The surfaces employed were elastic polymers such as poly(ether urethane urea), poly(ether urethane), silicone urethane copolymer, silicone rubber and poly(ether urethane) with the anti-calcifying agent hydroxyethane bisphosphate. Each polymer surface treated was exposed in vitro to the dynamic, heparinized whole blood perfused for upto 6 min and the surface area of platelets initially adhered was measured by employing in situ epifluorescence video microscopy. The blood perfusion was performed on the surfaces treated at the following three different conditions: directly on the bare surfaces, after protein pre-adsorption and after residence in buffer for 3 days of the surfaces protein pre-adsorbed for 2 h. The effects of blood plasma pre-adsorption on the initial platelet adhesion was surface-dependent. The amount of the adsorbed fibrinogen and the surface coverage area of the adhered platelets were dependent on the surface conditions whether substrates were bare surfaces or protein pre-adsorbed ones. To test an effect of possible morphological (re)orientations of the adsorbed proteins on the initial platelet adhesion, the polymeric substrate pre-adsorbed with 1% blood plasma was immersed in phosphate buffered solution for 3 days and then exposed to physiological blood perfusion. The surface area of the platelets adhered on these surfaces was significantly different from that of the surfaces treated with protein pre-adsorption only. These results indicated that platelet adhesion was dependent on the surface property itself and pre-treatment conditions such as blood perfusion without any pre-adsorption of proteins, and blood perfusion either after protein pre-adsorption or after subsequent substrate residence in buffer of the substrate pre-adsorbed with proteins. Understanding of these results may guide for better designs of blood-contacting materials based on protein behaviors.

  • PDF

Control of Platelet Rolling and Adhesion

  • Moskowitz, Samuel E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.77.1-77
    • /
    • 2002
  • Platelets arrest bleeding and repair damaged blood vessels. The purpose of this paper is to formulate a mathematical model for the control of platelet adhesion within the vasculature consistent with experimental findings, particularly those of Frenette, Ruggeri , Savage, Yuan, Lawrence and Springer. In addition to providing some, albeit rudimentary, insight into the behavior of platelets, a numerical simulation of this theoretical model may be useful in a systematic study of pathological cases. Glycoprotein receptor complex (GPIb/V/IX), found on the platelet surface membrane, binds to the adhesive protein and ligand von Willebrand factor (vWf), located within the sub-endothelium. The binding...

  • PDF

Evaluation of the platelet adhesiveness using a peptide-immobilized surface

  • 김진희;김현정;김종원;민병구;최태부
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.16-18
    • /
    • 1997
  • The adhesion of stimulated and unstimulated platelet to fibrinogen requires the receptor binding site of GPIIb/IIIa. These recognition sites are existed in the Au chain(RGDS at positions 572-575 and RGDF at 95-98) and the carboxyterminal $\gamma$ chain (HHLGGAKQAGDV at 400-411) of fibrinogen. The unstimulated platelet does not adhered on the fragment E-coated surface containing RGDF sequence. In this study, we developed RGDF-immobilized surface to detect the functional state of platelet. RGDF-immobilized surface was prepared on the glass using photolithographic technology. Platelet adhesion to petide(RGDF)-immobilized surface was observed by the fluorescence microscope using mepacrine.

  • PDF

Properties of Blood Compatible Crosslinked Blends of $Pellethene^{(R)}$/Multiblock Polyurethanes Containing Phospholipid Moiety/C-18 Alkyl Chain

  • Yoo, Hye-Jin;Kim, Han-Do
    • Macromolecular Research
    • /
    • 제16권7호
    • /
    • pp.596-603
    • /
    • 2008
  • To improve the mechanical properties, dimensional stability and blood compatibility, the biomedical material $Pellethene^{(R)}$ was blended with multiblock polyurethane (MPU) containing phospopholipid/long alkyl chain (C-18) at the various MPU contents and crosslinked using dicumyl peroxide as a crosslinking agent. The maximum MPU content for stable $Pellethene^{(R)}$/MPU blended films was approximately 30 wt%. The optimum crosslinking agent content and crosslinking time with respect to the mechanical properties were 4 wt% and 3 h, respectively. The mechanical properties (tensile strength and elongation at break) and water absorption of the crosslinked blend film increased with increasing MPU content. The test of platelet adhesion on the surfaces of the crosslinked blend film showed a decrease in the level of platelet adhesion from 70% to 6% with increasing MPU content from 0 to 30 wt%. These results suggest that the crosslinked $Pellethene^{(R)}$/MPU-30 (MPU content: 30 wt%) sample has strong potential as a novel material for blood compatible material applications.

Glycoportein IIb/IIIa와 칼슘동원의 조절을 통한 Steppogenin의 혈소판활성 억제효과 (Inhibitory Actions of Steppogenin on Platelet Activity Through Regulation of Glycoprotein IIb/IIIa and Ca2+ Mobilization)

  • 신정해;하주연;권혁우
    • 생약학회지
    • /
    • 제51권2호
    • /
    • pp.100-106
    • /
    • 2020
  • The extract of Cudrania tricuspidata is used in ethnomedicine throughout Eastern Asia in China, Korea and Japan. In Korean traditional medicine, Cudrania tricuspidata has been used to treat eczema, mumps, tuberculosis, contusions, insomnia and acute arthritis. In addition, it has been reported that root extract of Cudrania tricuspidata has anti-platelet effects. Therefore, we investigated which compound in Cudrania tricuspidata has inhibitory effect on platelet aggregation. In this study, we tried to explain the inhibitory mechanism of steppogenin from Cudrania tricuspidata on human platelet aggregation. Collagen-induced human platelet aggregation and [Ca2+]i mobilization were dose-dependently inhibited by steppogenin and we determined the inhibition by steppogenin is due to the down regulation of extracellular-signal-regulated kinase(ERK) and inositol-1,4,5-triphosphate receptor type I(IP3RI) phosphorylation. In addition, steppogenin inhibited collagen-induced fibronectin adhesion to αIIb/β3 and thromboxane A2 generation. Thus, in the present study, steppogenin showed an inhibitory effect on human platelet aggregation, suggesting its potential use for preventing platelet-induced cardiovascular disease.

Antiplatelet Effect of Cudraxanthone L Isolated from Cudrania tricuspidata via Inhibition of Phosphoproteins

  • Shin, Jung-Hae;Rhee, Man Hee;Kwon, Hyuk-Woo
    • Natural Product Sciences
    • /
    • 제26권4호
    • /
    • pp.295-302
    • /
    • 2020
  • Cudrania tricuspidata (C. tricuspidata) is a deciduous tree found in Japan, China and Korea. The root, stems, bark and fruit of C. tricuspidata has been used as traditional herbal remedies such as eczema, mumps, acute arthritis and tuberculosis. In this study, we investigated the potential efficacies of this natural compound by focusing on the inhibitory effect of cudraxanthone L (CXL) isolated from the roots of C. tricuspidata on human platelet aggregation. Our study focused on the action of CXL on collagen-stimulated human platelet aggregation, inhibition of platelet signaling molecules such as fibrinogen binding, intracellular calcium mobilization, fibronectin adhesion, dense granule secretion, and thromboxane A2 secretion. In addition, we investigated the inhibitory effect of CXL on thrombin-induced clot retraction. Our results showed that CXL inhibited collagen-induced human platelet aggregation, intracellular calcium mobilization, fibrinogen binding, fibronectin adhesion and clot retraction without cytotoxicity. Therefore, we confirmed that CXL has inhibitory effects on human platelet activities and has potential value as a natural substance for preventing thrombosis.

Euchrestaflavanone A can attenuate thrombosis through inhibition of collagen-induced platelet activation

  • Shin, Jung-Hae;Kwon, Hyuk-Woo
    • Journal of Applied Biological Chemistry
    • /
    • 제63권4호
    • /
    • pp.339-345
    • /
    • 2020
  • Euchrestaflavanone A (EFA) is a flavonoid found in the root bark of Cudrania tricuspidata. C. tricuspidata extract, widely used throughout Asia in traditional medicine, has been investigated phytochemically and biologically and is known to have anti-obesity, anti-inflammatory, and anti-tumor effects. It has been reported that C. tricuspidata extract also possesses anti-platelet effects; however, the mechanism of its anti-platelet and anti-thrombotic activities is yet to be elucidated. In this study, we investigated the effects of EFA on the modulation of platelet function using collagen-induced human platelets. Our results showed that EFA markedly inhibited platelet aggregation. Furthermore, it downregulated glycoprotein IIb/IIIa (αIIb/β3)-mediated signaling events, including platelet adhesion, granule secretion, thromboxane A2 production, and clot retraction, but upregulated the cyclic adenosine monophosphate-dependent pathway. Taken together, EFA possesses strong anti-platelet and anti-thrombotic properties and is a potential therapeutic drug candidate to prevent platelet-related thrombosis and cardiovascular disease.

독활의 항혈소판 및 항산화 효과 (Effects of Aralia continentalis Kitagawa on Antiplatelet and Antioxidative Activities.)

  • 양선아;임남경;지광환;이인선
    • 생명과학회지
    • /
    • 제18권3호
    • /
    • pp.357-362
    • /
    • 2008
  • 독활 메탄올 추출물과 그 분획의 항혈전 및 항산화 효과를 확인하기 위하여 ADP를 이용하여 혈소판 응집억제효과를 탐색하고 DPPH 및 ABTS-radical 소거능을 측정하여 항산화능을 측정하였다. 그 결과 독활, 특히 EtOAc 분획은 ADP에 의해 유도된 혈소판응집과 트롬빈에 의한 혈소판 부착에 대하여 농도 의존적으로 저해효과를 나타내었으며, 높은 폴리페놀 함량과 가장 높은 라디칼 소거능을 통하여 독활의 항산화 효과를 확인하였다. 이상의 결과로 독활 EtOAc 분획의 높은 DPPH 및 ABTS radical 소거능이 항혈소판 효과에 영향을 미치는 것으로 사료된다.