Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.138

Platelet Shape Changes and Cytoskeleton Dynamics as Novel Therapeutic Targets for Anti-Thrombotic Drugs  

Shin, Eun-Kyung (College of Pharmacy, Seoul National University)
Park, Hanseul (College of Pharmacy, Ewha Womans University)
Noh, Ji-Yoon (Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology)
Lim, Kyung-Min (College of Pharmacy, Ewha Womans University)
Chung, Jin-Ho (College of Pharmacy, Seoul National University)
Publication Information
Biomolecules & Therapeutics / v.25, no.3, 2017 , pp. 223-230 More about this Journal
Abstract
Platelets play an essential role in hemostasis through aggregation and adhesion to vascular injury sites but their unnecessary activation can often lead to thrombotic diseases. Upon exposure to physical or biochemical stimuli, remarkable platelet shape changes precede aggregation or adhesion. Platelets shape changes facilitate the formation and adhesion of platelet aggregates, but are readily reversible in contrast to the irrevocable characteristics of aggregation and adhesion. In this dynamic phenomenon, complex molecular signaling pathways and a host of diverse cytoskeleton proteins are involved. Platelet shape change is easily primed by diverse pro-thrombotic xenobiotics and stimuli, and its inhibition can modulate thrombosis, which can ultimately contribute to the development or prevention of thrombotic diseases. In this review, we discussed the current knowledge on the mechanisms of platelet shape change and also pathological implications and therapeutic opportunities for regulating the related cytoskeleton dynamics.
Keywords
Platelet shape changes; Cytoskeleton dynamics; Thrombosis; Aggregation; Adhesion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fox, J. E. and Phillips, D. R. (1981) Inhibition of actin polymerization in blood platelets by cytochalasins. Nature 292, 650-652.   DOI
2 Furman, M. I., Gardner, T. M. and Goldschmidt-Clermont, P. J. (1993) Mechanisms of cytoskeletal reorganization during platelet activation. Thromb. Haemost. 70, 229-232.   DOI
3 Haaland, H. D. and Holmsen, H. (2011) Potentiation by adrenaline of agonist-induced responses in normal human platelets in vitro. Platelets 22, 328-337.   DOI
4 Hartwig, J. H. (1992) Mechanisms of actin rearrangements mediating platelet activation. J. Cell Biol. 118, 1421-1442.   DOI
5 Hartwig, J. H. (2013) Chapter 8 - The Platelet Cytoskeleton A2. In Platelets (A. D. Michelson, Ed.), pp. 145-168. Academic Press.
6 Hartwig, J. H., Barkalow, K., Azim, A. and Italiano, J. (1999) The elegant platelet: signals controlling actin assembly. Thromb. Haemost. 82, 392-398.   DOI
7 Hartwig, J. H., Bokoch, G. M., Carpenter, C. L., Janmey, P. A., Taylor, L. A., Toker, A. and Stossel, T. P. (1995) Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82, 643-653.   DOI
8 Heasman, S. J. and Ridley, A. J. (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690-701.   DOI
9 Jackson, S. P. (2007) The growing complexity of platelet aggregation. Blood 109, 5087-5095.   DOI
10 Jagroop, I. A. and Mikhailidis, D. P. (2000) Angiotensin II can induce and potentiate shape change in human platelets: effect of losartan. J. Hum. Hypertens. 14, 581-585.   DOI
11 Radomski, A., Jurasz, P., Alonso-Escolano, D., Drews, M., Morandi, M., Malinski, T. and Radomski, M. W. (2005) Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol. 146, 882-893.   DOI
12 Offermanns, S., Toombs, C. F., Hu, Y. H. and Simon, M. I. (1997) Defective platelet activation in $G{\alpha}q$-deficient mice. Nature 389, 183-186.   DOI
13 Ohlmann, P., Eckly, A., Freund, M., Cazenave, J. P., Offermanns, S. and Gachet, C. (2000) ADP induces partial platelet aggregation without shape change and potentiates collagen-induced aggregation in the absence of $G{\alpha}q$. Blood 96, 2134-2139.
14 Paul, B. Z., Daniel, J. L. and Kunapuli, S. P. (1999) Platelet shape change is mediated by both calcium-dependent and -independent signaling pathways. Role of p160 Rho-associated coiled-coil-containing protein kinase in platelet shape change. J. Biol. Chem. 274, 28293-28300.   DOI
15 Rao, A. K., Vaidyula, V. R., Bagga, S., Jalagadugula, G., Gaughan, J., Wilhite, D. B. and Comerota, A. J. (2006) Effect of antiplatelet agents clopidogrel, aspirin, and cilostazol on circulating tissue factor procoagulant activity in patients with peripheral arterial disease. Thromb. Haemost. 96, 738-743.   DOI
16 Jennrich, P. (2013) The influence of arsenic, lead, and mercury on the development of cardiovascular diseases. ISRN Hypertens. 2013, 234034.
17 Ren, Q., Barber, H. K., Crawford, G. L., Karim, Z. A., Zhao, C., Choi, W., Wang, C. C., Hong, W. and Whiteheart, S. W. (2007) Endobrevin/ VAMP-8 is the primary v-SNARE for the platelet release reaction. Mol. Biol. Cell 18, 24-33.   DOI
18 Retzer, M. and Essler, M. (2000) Lysophosphatidic acid-induced platelet shape change proceeds via Rho/Rho kinase-mediated myosin light-chain and moesin phosphorylation. Cell. Signal. 12, 645-648.   DOI
19 Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T. and Kirschner, M. W. (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221-231.   DOI
20 Janowska-Wieczorek, A., Marquez-Curtis, L. A., Wysoczynski, M. and Ratajczak, M. Z. (2006) Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion 46, 1199-1209.   DOI
21 Jun, E. A., Lim, K. M., Kim, K., Bae, O. N., Noh, J. Y., Chung, K. H. and Chung, J. H. (2011) Silver nanoparticles enhance thrombus formation through increased platelet aggregation and procoagulant activity. Nanotoxicology 5, 157-167.   DOI
22 Jurak Begonja, A., Hoffmeister, K. M., Hartwig, J. H. and Falet, H. (2011) FlnA-null megakaryocytes prematurely release large and fragile platelets that circulate poorly. Blood 118, 2285-2295.   DOI
23 Kanaji, T., Ware, J., Okamura, T. and Newman, P. J. (2012) $GPIb{\alpha}$ regulates platelet size by controlling the subcellular localization of filamin. Blood 119, 2906-2913.   DOI
24 Kashiwagi, H., Shiraga, M., Kato, H., Kamae, T., Yamamoto, N., Tadokoro, S., Kurata, Y., Tomiyama, Y. and Kanakura, Y. (2005) Negative regulation of platelet function by a secreted cell repulsive protein, semaphorin 3A. Blood 106, 913-921.   DOI
25 Kim, M., Han, C. H. and Lee, M. Y. (2014) NADPH oxidase and the cardiovascular toxicity associated with smoking. Toxicol. Res. 30, 149-157.   DOI
26 Klages, B., Brandt, U., Simon, M. I., Schultz, G. and Offermanns, S. (1999) Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J. Cell Biol. 144, 745-754.   DOI
27 Knijff-Dutmer, E., Koerts, J., Nieuwland, R., Kalsbeek-Batenburg, E. and Van De Laar, M. (2002) Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum. 46, 1498-1503.   DOI
28 Savouret, J. F., Berdeaux, A. and Casper, R. (2003) The aryl hydrocarbon receptor and its xenobiotic ligands: a fundamental trigger for cardiovascular diseases. Nutr. Metab. Cardiovasc. Dis. 13, 104-113.   DOI
29 Sanderson, H. M., Heptinstall, S., Vickers, J. and Losche, W. (1996) Studies on the effects of agonists and antagonists on platelet shape change and platelet aggregation in whole blood. Blood Coagul. Fibrinolysis 7, 245-248.   DOI
30 Sandmann, R. and Koster, S. (2016) Topographic cues reveal two distinct spreading mechanisms in blood platelets. Sci. Rep. 6, 22357.
31 Tadokoro, S., Shattil, S. J., Eto, K., Tai, V., Liddington, R. C., de Pereda, J. M., Ginsberg, M. H. and Calderwood, D. A. (2003) Talin binding to integrin b tails: a final common step in integrin activation. Science 302, 103-106.   DOI
32 Schraw, T. D., Lemons, P. P., Dean, W. L. and Whiteheart, S. W. (2003) A role for Sec1/Munc18 proteins in platelet exocytosis. Biochem. J. 374, 207-217.   DOI
33 Smyth, E., Solomon, A., Vydyanath, A., Luther, P. K., Pitchford, S., Tetley, T. D. and Emerson, M. (2015) Induction and enhancement of platelet aggregation in vitro and in vivo by model polystyrene nanoparticles. Nanotoxicology 9, 356-364.   DOI
34 Smyth, S. S., Whiteheart, S., Italiano, J. E. J. and Coller, B. S. (2010) Platelet morphology, biochemistry, and function. In Williams Hematology (K. Kaushansky, E. Beutler, U. Seligsohn, M. A. Lichtman, T. J. Kipps and J. T. Prchal), pp. 1735-1814. The McGraw-Hill Companies, Inc.
35 Thon, J. N. and Italiano, J. E., Jr. (2012) Does size matter in platelet production? Blood 120, 1552-1561.   DOI
36 Tolmachova, T., Abrink, M., Futter, C. E., Authi, K. S. and Seabra, M. C. (2007) Rab27b regulates number and secretion of platelet dense granules. Proc. Natl. Acad. Sci. U.S.A. 104, 5872-5877.   DOI
37 Kovacsovics, T. J. and Hartwig, J. H. (1996) Thrombin-induced GPIb-IX centralization on the platelet surface requires actin assembly and myosin II activation. Blood 87, 618-629.
38 Abrescia, P. and Golino, P. (2005) Free radicals and antioxidants in cardiovascular diseases. Expert Rev. Cardiovasc. Ther. 3, 159-171.   DOI
39 Bennett, J. S., Zigmond, S., Vilaire, G., Cunningham, M. E. and Bednar, B. (1999) The platelet cytoskeleton regulates the affinity of the integrin ${\alpha}IIb{\beta}3$ for fibrinogen. J. Biol. Chem. 274, 25301-25307.   DOI
40 Berridge, M. J., Lipp, P. and Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11-21.
41 Kuhn, S. and Geyer, M. (2014) Formins as effector proteins of Rho GTPases. Small GTPases 5, e29513.
42 Kuwahara, M., Sugimoto, M., Tsuji, S., Matsui, H., Mizuno, T., Miyata, S. and Yoshioka, A. (2002) Platelet shape changes and adhesion under high shear flow. Arterioscler. Thromb. Vasc. Biol. 22, 329-334.   DOI
43 Lefebvre, P., White, J., Krumwiede, M. and Cohen, I. (1993) Role of actin in platelet function. Eur. J. Cell Biol. 62, 194-204.
44 Liu, Y., Yin, H., Jiang, Y., Xue, M., Guo, C., Shi, D. and Chen, K. (2013) Correlation between platelet gelsolin and platelet activation level in acute myocardial infarction rats and intervention effect of effective components of chuanxiong rhizome and red peony root. Evid. Based Complement. Alternat. Med. 2013, 985746.
45 Macfarlane, D. E. (1981) The effects of methyl mercury on platelets: induction of aggregation and release via activation of the prostaglandin synthesis pathway. Mol. Pharmacol. 19, 470-476.
46 Matarrese, P., Straface, E., Palumbo, G., Anselmi, M., Gambardella, L., Ascione, B., Del Principe, D. and Malorni, W. (2009) Mitochondria regulate platelet metamorphosis induced by opsonized zymosan A-activation and long-term commitment to cell death. FEBS J. 276, 845-856.   DOI
47 Maurer-Spurej, E. and Devine, D. V. (2001) Platelet aggregation is not initiated by platelet shape change. Lab. Invest. 81, 1517-1525.   DOI
48 Miki, H., Suetsugu, S. and Takenawa, T. (1998) WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 17, 6932-6941.   DOI
49 Van Poucke, S., Stevens, K., Marcus, A. E. and Lance, M. (2014) Hypothermia: effects on platelet function and hemostasis. Thromb. J. 12, 31.   DOI
50 Torti, M., Festetics, E. T., Bertoni, A., Sinigaglia, F. and Balduini, C. (1996) Agonist-induced actin polymerization is required for the irreversibility of platelet aggregation. Thromb. Haemost. 76, 444-449.   DOI
51 Wannemacher, K. M., Wang, L., Zhu, L. and Brass, L. F. (2011) The role of semaphorins and their receptors in platelets: Lessons learned from neuronal and immune synapses. Platelets 22, 461-465.   DOI
52 White, J. G. and Clawson, C. C. (1980) The surface-connected canalicular system of blood platelets--a fenestrated membrane system. Am. J. Pathol. 101, 353-364.
53 Winokur, R. and Hartwig, J. H. (1995) Mechanism of shape change in chilled human platelets. Blood 85, 1796-1804.
54 Zheng, Y., Adams, T., Zhi, H., Yu, M., Wen, R., Newman, P. J., Wang, D. and Newman, D. K. (2015) Restoration of responsiveness of phospholipase $C{\gamma}2$-deficient platelets by enforced expression of phospholipase $C{\gamma}1$. PLoS ONE 10, e0119739.   DOI
55 Zhu, L., Bergmeier, W., Wu, J., Jiang, H., Stalker, T. J., Cieslak, M., Fan, R., Boumsell, L., Kumanogoh, A., Kikutani, H., Tamagnone, L., Wagner, D. D., Milla, M. E. and Brass, L. F. (2007) Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proc. Natl. Acad. Sci. U.S.A. 104, 1621-1626.   DOI
56 Colman, R. W., Nachmias, V. T., Cines, D. B. and Schreiber, A. D. (1983) Effect of antiplatelet antibody on platelet shape change, volume, and morphology. Am. J. Physiol. 244, H357-H361.
57 Born, G. V., Dearnley, R., Foulks, J. G. and Sharp, D. E. (1978) Quantification of the morphological reaction of platelets to aggregating agents and of its reversal by aggregation inhibitors. J. Physiol. 280, 193-212.   DOI
58 Coller, B. S. (2013) Foreword - A brief history of ideas about platelets in health and disease. In Platelets (A. D. Michelson, Ed.), pp. xix-xliv. Academic Press.
59 Collins, B. and Hollidge, C. (2003) Antithrombotic drug market. Nat. Rev. Drug Discov. 2, 11-12.   DOI
60 Crowley, S. D., Gurley, S. B., Herrera, M. J., Ruiz, P., Griffiths, R., Kumar, A. P., Kim, H.-S., Smithies, O., Le, T. H. and Coffman, T. M. (2006) Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc. Natl. Acad. Sci. U.S.A. 103, 17985-17990.   DOI
61 Daniel, J. L., Molish, I. R., Rigmaiden, M. and Stewart, G. (1984) Evidence for a role of myosin phosphorylation in the initiation of the platelet shape change response. J. Biol. Chem. 259, 9826-9831.
62 Dayal, S., Pati, H. P., Pande, G. K., Sharma, P. and Saraya, A. K. (1995) Platelet ultra-structure study in Budd-Chiari syndrome. Eur. J. Haematol. 55, 294-301.
63 Escolar, G., Leistikow, E. and White, J. G. (1989) The fate of the open canalicular system in surface and suspension-activated platelets. Blood 74, 1983-1988.
64 Estevez, B., Stojanovic-Terpo, A., Delaney, M. K., O'Brien, K. A., Berndt, M. C., Ruan, C. and Du, X. (2013) LIM kinase-1 selectively promotes glycoprotein Ib-IX-mediated TXA2 synthesis, platelet activation, and thrombosis. Blood 121, 4586-4594.   DOI
65 Nakamura, F., Stossel, T. P. and Hartwig, J. H. (2011) The filamins: organizers of cell structure and function. Cell Adh. Migr. 5, 160-169.   DOI
66 Milioli, M., Ibanez-Vea, M., Sidoli, S., Palmisano, G., Careri, M. and Larsen, M. R. (2015) Quantitative proteomics analysis of plateletderived microparticles reveals distinct protein signatures when stimulated by different physiological agonists. J. Proteomics 121, 56-66.   DOI
67 Milton, J. G. and Frojmovic, M. M. (1984) Adrenaline and adenosine diphosphate-induced platelet aggregation require shape change. Importance of pseudopods. J. Lab. Clin. Med. 104, 805-815.
68 Mountford, J. K., Petitjean, C., Putra, H. W., McCafferty, J. A., Setiabakti, N. M., Lee, H., Tonnesen, L. L., McFadyen, J. D., Schoenwaelder, S. M., Eckly, A., Gachet, C., Ellis, S., Voss, A. K., Dickins, R. A., Hamilton, J. R. and Jackson, S. P. (2015) The class II PI 3-kinase, $PI3KC2{\alpha}$, links platelet internal membrane structure to shear-dependent adhesive function. Nat. Commun. 6, 6535.   DOI
69 Natarajan, P., May, J. A., Sanderson, H. M., Zabe, M., Spangenberg, P. and Heptinstall, S. (2000) Effects of cytochalasin H, a potent inhibitor of cytoskeletal reorganisation, on platelet function. Platelets 11, 467-476.   DOI
70 Nesbitt, W. S., Westein, E., Tovar-Lopez, F. J., Tolouei, E., Mitchell, A., Fu, J., Carberry, J., Fouras, A. and Jackson, S. P. (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15, 665-673.   DOI
71 Nurden, A. T. (2006) Glanzmann thrombasthenia. Orphanet J. Rare Dis. 1, 10.   DOI
72 Nomura, S., Uehata, S., Saito, S., Osumi, K., Ozeki, Y. and Kimura, Y. (2003) Enzyme immunoassay detection of platelet-derived microparticles and RANTES in acute coronary syndrome. Thromb. Haemost. 89, 506-512.   DOI