• Title/Summary/Keyword: plate-column system

Search Result 116, Processing Time 0.036 seconds

Ductility of Column-Slab eoint in R/C Flat Plate System (플랫 플레이트 구조의 기둥.슬래브 접합부 연성에 관한 연구)

  • 김형기;박복만
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.113-119
    • /
    • 2000
  • The R/C flat plate system provides architectural flexibility, clear space, reduced building height, simple formwork, which consequently enhance constructibility. One of the serious problems in the flat plate system is brittle punching shear failure due to transfer of shear force and unbalanced moments in column-slab joint. Recently, the flat plate system accompanied with shear walls to resist the lateral loads is applied to high-rise buidings. Although the flat plate system is not considered in design as part of the lateral load-resisting system, it is required that this system keeps the ductile behavior for the lateral displacement of the building. However, it is unclear whether the column-slab joint possesses ductility enough to survive the lateral deformation. The objective of this paper is to investigate the major parameters that influence the ductility of R/C flat plate system by examining the existing experiments on column-slab joint. The effects of gravity load and shear reinforcement on the ductility of the flat plate system are presented.

Development for Connection Details between Flat Plate Slab and H-Steel Column (무량판 슬래브와 H형강 기둥 접합부 상세 개발)

  • Yoon, Myung-Ho;Lee, Yoon-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • The flat plate slab system have many good features, which are design flexibilities, saving of story-height and economy of construction etc. But the study of flat plate slab system for H-steel column have been rare both at home and abroad. Recently high-rise residential and commercial buildings have been constructed in urban areas in Korea. The suggested dowel connection system is more likely to adoptable because it remarkably contribute to save inter story height and also to have many advantages compared with conventional steel works such as H-Steel frame + Deck plate slab system. This study aims at developing design method and program for connection between H-Steel column and flat plate slab system, which contribute to save significantly inter-story height.

Heat and mass transfer characteristics of generator combined rectification system of the GAX ammonia absorption heat pump (GAX 암모니아 흡수식 열폄프의 발생기 일체형 정류기의 열 및 물질전달 해석)

  • 윤상국
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.431-439
    • /
    • 1999
  • A generator-GAX combined rectification system of an ammonia absorption heat pump was investigated to get the optimum design values. The mass and heat transfer phenomena of the rectification system were analysed. The number of column plates, equilibrium temperature of solution on each plate and flow rates of solution and vapor generated were predicted. The characteristics of mass and heat transfer of the generator-GAX combined rectification system, i.e. concentration difference of leaving solution and vapor on each column plate, were found to be mainly governed by the pressure of generator, reflex ratio and temperature difference of analyser coolant. The number of rectification column plates for each different pressure in generator was obtained. The optimum locations for installing the feeder from solution-cooled absorber and GAX desorber in generator were predicted. The improvement of COP was followed by the increase of the rectifier efficiency and the number of column plate, and the decrease of reflex ratio.

  • PDF

A new base plate system using deformed reinforcing bars for concrete filled tubular column

  • Park, Yong-Myung;Hwang, Won-Sup;Yoon, Tae-Yang;Hwang, Min-Oh
    • Steel and Composite Structures
    • /
    • v.5 no.5
    • /
    • pp.375-394
    • /
    • 2005
  • An experimental study was conducted to develop a new base plate anchorage system for concrete filled tubular column under an axial load and a moment. The column was connected to a concrete foundation using ordinary deformed reinforcing bars that are installed at the inside and outside of the column. In order to investigate the moment resisting capacity of the system, horizontal cyclic loads are applied until the ultimate condition is reached with the axial load held constant. To derive a design method for moment resisting capacity, the reinforced concrete section approach was investigated with the assumption of strain compatibility. The results by this approach agreeded well with those of experiments when the bearing pressure of confined concrete and tangent modulus of steel bars are assumed appropriately. Also, it was found that the column interaction curve can be used to predict the yield strength of the base plate system.

Response of a rectangular plate-column system on a tensionless Winkler foundation subjected to static and dynamic loads

  • Guler, K.;Celep, Z.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.699-712
    • /
    • 2005
  • The response of a plate-column system having five-degree-of-freedom supported by an elastic foundation and subjected to static lateral load, harmonic ground motion and earthquake motion is studied. Two Winkler foundation models are assumed: a conventional model which supports compression and tension and a tensionless model which supports compression only. The governing equations of the problem are obtained, solved numerically and the results are presented in figures to demonstrate the behavior of the system for various values of the system parameters comparatively for the conventional and the tensionless Winkler foundation models.

A Study of Shear Reinforcement for Slab-Column Connection (슬래브-기둥 접합부의 전단보강상세에 관한 연구)

  • Baek, Sung-Woo;Kim, Jun-Seo;Choi, Hyun-Ki;Choi, Chang-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.37-40
    • /
    • 2008
  • The study is an experimental test on full-scale flat plate slab-column interior connection. The punching shear on the flat plate slab-column connection can bring about the reason of the brittle punching shear failure which may result of collapsing the whole structure. From the development of residential flat plate system, the shear reinforcement is developed for preventing the punching shear. For making sure of the punching shear capacity, developed for shear reinforcement in slab-column connection, the structural test is performed. The dimension of the slabs was 2620*2725*180mm with square column (600*800mm). The slabs were tested up to failure monotonic vertical shear forces. The presences of S/S bar and wire mesh substantially increased the punching shear capacity and the ductility of the slab-column connections.

  • PDF

Foundation System with Precast Concrete Bearing Plate (프리캐스트 콘크리트 베어링 플레이트를 이용한 기초구조 시스템)

  • 이원호;문정호;이용재;이한준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.853-860
    • /
    • 1999
  • A large concentrated load is often transferred to reinforced concrete footing in a tall building. In this study, a foundation system which used high strength precast concrete bearing plate was proposed. This concrete bearing plate has to be strong enough to resist the column load. However, a sufficient bearing strength may not be provided if the column load is too high and the concrete of bearing plate does not have enough strength.

  • PDF

An Experimental Study on Structural Performance of H-Steel or SRC Column and Flat Plate Slab Connection (플랫 플레이트 슬래브와 H형강 기둥 접합부의 구조 성능에 관한 실험적 연구)

  • Yoon, Myung-Ho;Lee, Yoon-Hee;Ryu, Hong-Sik;Kim, Jin-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.2
    • /
    • pp.9-14
    • /
    • 2014
  • Main topics in this study is a new structural detail for connection between H-Steel or SRC column and flat plate slab. We carried out to evaluate the punching shear performance of H-steel or SRC column + RC slab system for vertical load and lateral load. From the test results structural characteristics - yield moment, yield rotation, maximum moment, deformation capabilities ect. - are obtained and evaluated. In this paper as a shear reinforcement for supporting region of plate closed stirrup type and shear band are used, and their test results are compared.

Structural Behavior of Post-Tensioned Flat Plate Slab-Column Connections (포스트 텐션 플랫 플레이트 슬래브 접합부의 거동)

  • Cho Kyung Hyun;Han Sang Whan;Lee Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.53-56
    • /
    • 2004
  • Recently, post tension flat plate slab system is widely used for a new slab structural system. Slab-column connections may fail in brittle manner by punching shear. Flat plate slabs have been widely used for gravity load resisting system in buildings. Lateral resistance usually provided by shear walls or moment resisting frames. Since plat plates move together with lateral loading system during earthquake or wind, it is important to evaluate the gravity resistance under a drift experienced by lateral force resisting system during either design earthquake or wind. Thus, this study investigated post tension flat plate slab systems whether they have sufficient strength and deformability to resist gravity loads during specified drift levels. Experimental research was carried out.

  • PDF

Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)

  • Azandariani, Mojtaba Gorji;Gholhaki, Majid;Kafi, Mohammad Ali;Zirakian, Tadeh;Khan, Afrasyab;Abdolmaleki, Hamid;Shojaeifar, Hamid
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.109-123
    • /
    • 2021
  • This research endeavor intends to use the implicit finite element method to investigate the structural response of steel shear walls with partial plate-column connection. To this end, comprehensive verification studies are initially performed by comparing the numerical predictions with several reported experimental results in order to demonstrate the reliability and accuracy of the implicit analysis method. Comparison is made between the hysteresis curves, failure modes, and base shear capacities predicted numerically using ABAQUS software and obtained/observed experimentally. Following the validation of the finite element analysis approach, the effects of partial plate-column connection on the strength and stiffness performances of steel shear wall systems with different web-plate slenderness and aspect ratios under monotonic loading are investigated through a parametric study. While removal of the connection between the web-plate and columns can be beneficial by decreasing the overall system demand on the vertical boundary members, based on the results and findings of this study such detachment can lower the stiffness and strength capacities of steel shear walls by about 25%, on average.