Browse > Article
http://dx.doi.org/10.12989/scs.2021.39.1.109

Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)  

Azandariani, Mojtaba Gorji (Structural Engineering Division, Faculty of Civil Engineering, Semnan University)
Gholhaki, Majid (Structural Engineering Division, Faculty of Civil Engineering, Semnan University)
Kafi, Mohammad Ali (Structural Engineering Division, Faculty of Civil Engineering, Semnan University)
Zirakian, Tadeh (Department of Civil Engineering and Construction Management, California State University)
Khan, Afrasyab (Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University)
Abdolmaleki, Hamid (Department of Civil Engineering, Tuyserkan Branch, Islamic Azad University)
Shojaeifar, Hamid (Department of Civil Engineering, Faculty of Maragheh, Maragheh Branch, Technical and Vocational University (TUV))
Publication Information
Steel and Composite Structures / v.39, no.1, 2021 , pp. 109-123 More about this Journal
Abstract
This research endeavor intends to use the implicit finite element method to investigate the structural response of steel shear walls with partial plate-column connection. To this end, comprehensive verification studies are initially performed by comparing the numerical predictions with several reported experimental results in order to demonstrate the reliability and accuracy of the implicit analysis method. Comparison is made between the hysteresis curves, failure modes, and base shear capacities predicted numerically using ABAQUS software and obtained/observed experimentally. Following the validation of the finite element analysis approach, the effects of partial plate-column connection on the strength and stiffness performances of steel shear wall systems with different web-plate slenderness and aspect ratios under monotonic loading are investigated through a parametric study. While removal of the connection between the web-plate and columns can be beneficial by decreasing the overall system demand on the vertical boundary members, based on the results and findings of this study such detachment can lower the stiffness and strength capacities of steel shear walls by about 25%, on average.
Keywords
finite element simulation; implicit analysis method; steel plate shear walls; partial plate-column connection; structural response assessment;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 ABAQUS-6.12-1. (2012), standard user's manual. Hibbitt, Karlsson and Sorensen, Inc.
2 AISC. (2007), Steel design guide 20, steel plate shear walls. Chicago (IL).
3 AISC 341-16. (2016), AISC Committee, Seismic Provisions for Structural Steel Buildings. America.
4 Ali, M.M., Osman, S.A., Husam, O.A. and Al-Zand, A.W. (2018), "Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings", Steel Compos. Struct., 26(3), 361-373. https://doi.org/10.12989/scs.2018.26.3.361.   DOI
5 Astaneh-Asl, A. (2001), Seismic Behavior and Design of Steel Shear Walls. Structural Steel Educational Council, USA.
6 Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2019), "Experimental and numerical investigation of an innovative buckling-restrained fuse under cyclic loading", Structures, 22, 186-199. https://doi.org/10.1016/j.istruc.2019.07.014.   DOI
7 Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2020), "Performance of innovative composite bucklingrestrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36(2), 163-177. https://doi.org/10.12989/SCS.2020.36.2.163.   DOI
8 Mohebkhah, A. and Azandariani, M.G. (2016), "Lateral-torsional buckling resistance of unstiffened slender-web plate girders under moment gradient", Thin-Wall. Struct., 102, 215-221. https://doi.org/10.1016/J.TWS.2016.02.001.   DOI
9 Ozcelik, Y. and Clayton, P. M. (2018a). "Seismic design and performance of SPSWs with beam-connected web plates", J. Constr. Steel Res., 142, 55-67. https://doi.org/10.1016/j.jcsr.2017.12.004.   DOI
10 Mohebkhah, A. and Azandariani, M.G. (2020), "Shear resistance of retrofitted castellated link beams: Numerical and limit analysis approaches", Eng. Struct., 203, 109864. https://doi.org/10.1016/j.engstruct.2019.109864.   DOI
11 Ozcelik, Y. and Clayton, P. M. (2018b), "Behavior of columns of steel plate shear walls with beam-connected web plates." Eng. Struct., 172, 820-832. https://doi.org/10.1016/j.engstruct.2018.06.087.   DOI
12 Park, H.G., Kwack, J.H., Jeon, S.W., Kim, W.K. and Choi, I.R. (2007), "Framed Steel Plate Wall Behavior under Cyclic Lateral Loading", J. Struct. Eng., 133(3), 378-388. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:3(378)   DOI
13 Qin, Y., Lu, J.Y., Huang, L.C.X. and Cao, S. (2017), "Flexural behavior of beams in steel plate shear walls", Steel Compos. Struct., 23(4), 473-481. https://doi.org/10.12989/scs.2017.23.4.473.   DOI
14 Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T. and Salih, M.N.A. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569.   DOI
15 Rashidi, M., Mohammadi, M., Sadeghlou Kivi, S., Abdolvand, M. M., Truong-Hong, L. and Samali, B. (2020), "A Decade of Modern Bridge Monitoring Using Terrestrial Laser Scanning: Review and Future Directions", Remote Sensing, MDPI AG, 12(22), 3796. https://doi.org/10.3390/rs12223796   DOI
16 Rezai, M. (1999), "Seismic Behavior of Steel Plate Shear Walls by Shake Table Testing", Univ. of British Columbia, Vancouver, Canada.
17 Sabouri-Ghomi, S. (1989), "Quasi static and dynamic hysteretic behaviour of unstiffened steel plate shear walls", University of Wales College of Cardiff, UK.
18 Shekastehband, B., Azaraxsh, A.A. and Showkati, H. (2017), "Hysteretic behavior of perforated steel plate shear walls with beam-only connected infill plates", Steel Compos. Struct., 25(4), 505-521. https://doi.org/10.12989/scs.2017.25.4.505.   DOI
19 Shishkin, J.J., Driver, R.G. and Grondin, G.Y. (2009), "Analysis of Steel Plate Shear Walls Using the Modified Strip Model", J. Struct. Eng., 135(11), 1357-1366. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000066.   DOI
20 Teixeira, P., Martinez, G. and Graciano, C. (2016), "Shear response of expanded metal panels", Eng. Struct., 106, 261-272. https://doi.org/10.1016/j.engstruct.2015.10.034.   DOI
21 Thorburn, L.J., Kulak, G.L. and Montgomery, C.J. (1983), Analysis of Steel Plate Shear Walls, Structure Engineering Report, Rep. No. 107.
22 CAN/CSA-S16-09. (2009), Limits States Design of Steel Structures. Rexdale, Ontario, Canada, Canadian Standards Association.
23 Tian, W., Hao, J. and Fan, C. (2016), "Analysis of thin steel plate shear walls using the Three-Strip model", J. Struct. Eng., 142, 1-11. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001451.   DOI
24 Timler, P.A. and Kulak, G.L. (1983), Experimental Study of Steel Plate Shear Walls, Structural engineering Report, Rep. No. 114.
25 Tromposch, E.W. and Kulak, G.L. (1987), Cyclic and static behavior of thin panel steel plate shear walls, Structural Engineering Report, Rep. No. 145.
26 Bahrebar, M., Kabir, M.Z., Hajsadeghi, M., Zirakian, T. and Lim, J. B.P. (2016), "Structural performance of steel plate shear walls with trapezoidal corrugations and centrally-placed square perforations", Int. J. Steel Struct., 16(3), 845-855. https://doi.org/10.1007/s13296-015-0116-y.   DOI
27 Berman, J. and Bruneau, M. (2003), "Plastic Analysis and Design of Steel Plate Shear Walls", J. Struct. Eng., 129(11), 1448-1456. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:11(1448).   DOI
28 Vatansever, C. and Berman, J.W. (2015), "Analytical investigation of thin steel plate shear walls with screwed infill plate", Steel Compos. Struct., 19(5), 1145-1165. https://doi.org/10.12989/scs.2015.19.5.1145.   DOI
29 Usefi, N. and Ronagh, H. (2020), "Seismic characteristics of hybrid cold-formed steel wall panels", Structures, 27, 718-731. https://doi.org/10.1016/j.istruc.2020.06.033.   DOI
30 Usefi, N., Ronagh, H. and Sharafi, P. (2020), "Lateral performance of a new hybrid CFS shear wall panel for mid-riseconstruction." J. Constr. Steel Res., 168, 106000. https://doi.org/10.1016/j.jcsr.2020.106000.   DOI
31 Vatansever, C. and Yardimci, N. (2011), "Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections", Steel Compos. Struct., 11(3), 251-271. https://doi.org/10.12989/scs.2011.11.3.251.   DOI
32 Vian, D., Bruneau, M. and Purba, R. (2009a), "Special Perforated Steel Plate Shear Walls with Reduced Beam Section Anchor Beams. II: Analysis and Design Recommendations", J. Struct. Eng., 135(3), 221-228. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(221).   DOI
33 Vian, D., Bruneau, M., Tsai, K.C. and Lin, Y.C. (2009b), "Special Perforated Steel Plate Shear Walls with Reduced Beam Section Anchor Beams. I: Experimental Investigation", J. Struct. Eng., 135(3), 211-220. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(211).   DOI
34 Choi, I.R. and Park, H.G. (2010), "Hysteresis Model of Thin Infill Plate for Cyclic Nonlinear Analysis of Steel Plate Shear Walls", J. Struct. Eng., 136(11), 1423-1434. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000244.   DOI
35 Chatterjee, A.K., Bhowmick, A. and Bagchi, A. (2015), "Development of a simplified equivalent braced frame model for Steel Plate Shear Wall systems", Steel Compos. Struct., 18(3), 711-737. https://doi.org/10.12989/scs.2015.18.3.711.   DOI
36 Choi, I.R. and Park, H.G. (2008), "Ductility and Energy Dissipation Capacity of Shear-Dominated Steel Plate Walls", J. Struct. Eng., 134(9), 1495-1507. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:9(1495)   DOI
37 Choi, I.R. and Park, H.G. (2009). "Steel Plate Shear Walls with Various Infill Plate Designs", J. Struct. Eng., 135(7), 785-796. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:7(785).   DOI
38 Clayton, P.M., Berman, J.W. and Lowes, L.N. (2015), "Seismic performance of self-centering steel plate shear walls with beam-only-connected web plates", J. Constr. Steel Res., 106, 198-208. https://doi.org/10.1016/j.jcsr.2014.12.017.   DOI
39 Wang, M. and Yang, W. (2018), "Equivalent constitutive model of steel plate shear wall structures", Thin-Wall. Struct., 124, 415-429. https://doi.org/10.1016/J.TWS.2017.12.016.   DOI
40 Wang, M., Shi, Y., Xu, J., Yang, W. and Li, Y. (2015a), "Experimental and numerical study of unstiffened steel plate shear wall structures", J. Constr. Steel Res., 112, 373-386. https://doi.org/10.1016/J.JCSR.2015.05.002.   DOI
41 Wang, M., Yang, W., Shi, Y. and Xu, J. (2015b), "Seismic behaviors of steel plate shear wall structures with construction details and materials", J. Constr. Steel Res., 107, 194-210. https://doi.org/10.1016/J.JCSR.2015.01.007.   DOI
42 Zirakian, T. and Zhang, J. (2015), "Structural performance of unstiffened low yield point steel plate shear walls", J. Constr. Steel Res., 112, 40-53. https://doi.org/10.12989/eas.2016.10.1.001.   DOI
43 Zirakian, T. and Zhang, J. (2016), "Study on seismic retrofit of structures using SPSW systems and LYP steel material", Earthq. Struct., 10(1), 1-23. https://doi.org/10.1016/J.JCSR.2015.04.023.   DOI
44 Elgaaly, M., Caccese, V. and Du, C. (1993), "Postbuckling Behavior of Steel‐Plate Shear Walls under Cyclic Loads", J. Struct. Eng., 119(2), 588-605. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(588).   DOI
45 Deng, E.F., Zong, L. and Ding, Y. (2019), "Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction", Steel Compos. Struct., 32(3), 347-359. https://doi.org/10.12989/scs.2019.32.3.347.   DOI
46 Dhar, M.M. and Bhowmick, A.K. (2016), "Seismic response estimation of steel plate shear walls using nonlinear static methods", Steel Compos. Struct., 20(4), 777-799. https://doi.org/10.12989/scs.2016.20.4.777.   DOI
47 Driver, R.G., Kulak, G.L., Kennedy, D.J.L. and Elwi, A.E. (1998). "Cyclic Test of Four-Story Steel Plate Shear Wall", J. Struct. Eng., 124(2), 112-120. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:2(112.   DOI
48 Dung, P.N. (2011), "Seismically retrofitting and upgrading RC-MRF by using expanded metal panels (Ph.D. dissertation)", University of Liege, Belgium.
49 Elgaaly, M. (1998), "Thin steel plate shear walls behavior and analysis", Thin-Wall. Struct., 32(1-3), 151-180. https://doi.org/10.1016/s0263-8231(98)00031-7.   DOI
50 Elgaaly, M. and Liu, Y. (1997), "Analysis of Thin-Steel-Plate Shear Walls", J. Struct. Eng., 123(11), 1487-1496. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1487)   DOI
51 Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2020), "Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading", Eng. Struct., 203, https://doi.org/10.1016/j.engstruct.2019.109866   DOI
52 Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Zirakian, T. (2021), "Study of effects of beam-column connection and column rigidity on the performance of SPSW system", J. Build. Eng., 33. https://doi.org/10.1016/j.jobe.2020.101821.   DOI
53 Jalali, S.A. and Banazadeh, M. (2016), "Development of a new deteriorating hysteresis model for seismic collapse assessment of thin steel plate shear walls", Thin-Wall. Struct., 106, 244-257. https://doi.org/10.1016/J.TWS.2016.05.008.   DOI
54 Graciano, C., Teixeira, P. and Martinez, G. (2019), "Yielding shear resistance of expanded metal panels", Thin-Wall. Struct., 138, 286-292. https://doi.org/10.1016/j.tws.2019.02.024.   DOI
55 Hitaka, T. and Matsui, C. (2003), "Experimental Study on Steel Shear Wall with Slits", J. Struct. Eng., 129(5), 586-595. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(586)   DOI
56 Hosseinzadeh, S.A.A. and Tehranizadeh, M. (2014), "The wall-frame interaction effect in steel plate shear wall systems." J. Constr. Steel Res., 98, 88-99. https://doi.org/10.1016/J.JCSR.2014.02.013.   DOI
57 Kalali, H., Hajsadeghi, M., Zirakian, T. and Alaee, F.J. (2015), "Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates", Steel Compos. Struct., 19(2), 277-292. https://doi.org/10.12989/scs.2015.19.2.277.   DOI
58 Kasaeian, S., Usefi, N., Ronagh, H. and Dareshiry, S. (2020), "Seismic performance of CFS strap-braced walls using capacity-based design approach", J. Constr. Steel Res., 174, 106317. https://doi.org/10.1016/j.jcsr.2020.106317.   DOI
59 Lubell, A.S., Prion, H.G.L., Ventura, C.E. and Rezai, M. (2000), "Unstiffened Steel Plate Shear Wall Performance under Cyclic Loading", J. Struct. Eng., 126(4), 453-460. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:4(453).   DOI
60 Lu, J., Yu, S., Xia, J., Qiao, X. and Tang, Y. (2018), "Experimental study on the hysteretic behavior of steel plate shear wall with unequal length slits", J. Constr. Steel Res., 147, 477-487. https://doi.org/10.1016/j.jcsr.2018.05.002.   DOI