• Title/Summary/Keyword: plate vibrations

Search Result 160, Processing Time 0.025 seconds

Torsional Vibration in Axisymmetric Out-of-plane Vibrations of an Annular Mindlin Plate (환상 민들린 평판의 축대칭 면외 진동에서의 비틀림 진동)

  • Kim, Chang-Boo;Lim, Jung-Ki
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.13-17
    • /
    • 2010
  • This presentation examines the characteristics of torsional vibration in axisymmetric out-of-plane vibrations of an annular Mindin plate. The out-of-plane vibration of circular or annular plates have been investigated since a long years ago by many researchers. When the classical Kirchhoff plate theory neglecting the effect of transverse shear deformation is applied to a thick plate, its out-of-plane natural frequencies are much different from reality. And so, since Minlin presented a plate theory considering the effect of rotary inertia and transverse shear deformation, many researches for the out-of-plane natural vibration of circular or annular Mindin plates have been performed. But almost all researchers missed the torsional vibration due to transverse shear deformation in axisymmetric out-of-plane vibrations of the circular or annular Mindin plate. Therefore, in this presentation, we verify the existence of torsional vibration of an annular plate and present the natural frequencies of an annular plate with free outer boundary surface.

  • PDF

Response characteristics and suppression of torsional vibration of rectangular prisms with various width-to-depth ratios

  • Takai, Kazunori;Sakamoto, Hiroshi
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.1-22
    • /
    • 2006
  • The response characteristics and suppression of flow-induced vibrations of rectangular prisms with various width-to-depth ratios were experimentally investigated. The prisms were rigid and elastically mounted at both ends to enable constrained torsional vibrations only. The present study focused on torsional vibrations, one of the three types of flow-induced vibrations generated in a rectangular prism. First, the response characteristics of torsional vibrations generated in rectangular prisms were investigated by free-vibration tests. It was found that the response characteristics of torsional vibrations generated in rectangular prisms could be classified into six patterns depending on the width-to-depth ratio. Next, the response characteristics of torsional vibrations observed in the free-vibration tests were reproduced by forced-vibration tests, and the mechanisms by which the three types of flow-induced vibrations, low-speed torsional flutter, vortex excitation and high-speed torsional flutter, are generated in the rectangular prisms were elucidated on the basis of characteristics of fluid forces and visualized flow patterns. Experiments were also carried out to establish an effective method for suppressing flow-induced vibrations generated in the rectangular prisms, and it was found that low-speed torsional flutter and high-speed torsional flutter could be suppressed by placing a small normal plate upstream of the prism, which results in suppression of the alternating rolling-up of the shear layers separating from the leading edges of the prism. It was also found that vortex excitation could be suppressed by placing a splitter plate downstream of the prism, which results in suppression of the generation of wake vortices.

Response of Nonlinear Asymmetric Vibrations of a Circular Plate (원판의 비선형 비대칭진동응답)

  • 여명환;이원경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.295-301
    • /
    • 2001
  • An investigation into asymmetric vibrations of a clamped circular plate under a hannonic excitation is made. We examine a primary resonance, in which the frequency of excitation is near the natural frequency of an asymmetric mode of the plate. We found not only a response having the form of standing wave but also one having the form of traveling wave, which was not observed by Sridhar, Mook and Nayfeh(1978; Journal of Sound and Vibration 59(2), pp. 159-170).

  • PDF

Forced vibrations of an elastic circular plate supported by unilateral edge lateral springs

  • Celep, Zekai;Gencoglu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.451-463
    • /
    • 2022
  • The present study deals with forced vibrations of an elastic circular plate supported along its circular edge by unilateral elastic springs. The plate is assumed to be subjected to a uniformly distributed and a concentrated load. Under the combination of these loads, equations of motion are explicitly derived for static and dynamic response analyses by assuming a series of the displacement functions of time and other unknown parameters which are to be determined by employing Lagrangian functional. The approximate solution is sought by applying the Lagrange equations of motions by using the potential energy of the external forces that includes the contributions of the edge forces and the external moments, i.e., those of the effects of the boundary condition to the analysis. For the numerical treatment of the problem in the time domain, the linear acceleration procedure is adopted. The tensionless character of the support is taken into account by using an iterative process and, the coordinate functions for the displacement field are selected to partially fulfill the boundary conditions so that an acceptable approximation can be achieved faster. Numerical results are presented in the figures focusing on the nonlinearity of the problem due to the plate lift-off from the unilateral springs at the edge support.

Design of piezoelectric transducer arrays for passive and active modal control of thin plates

  • Zenz, Georg;Berger, Wolfgang;Gerstmayr, Johannes;Nader, Manfred;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.547-577
    • /
    • 2013
  • To suppress vibration and noise of mechanical structures piezoelectric ceramics play an increasing role as effective, simple and light-weighted damping devices as they are suitable for sensing and actuating. Out of the various piezoelectric damping methods this paper compares mode based active control strategies to passive shunt damping for thin plates. Therefore, a new approach for the optimal placement of the piezoelectric sensors/actuators, or more general transducers, is proposed after intense theoretical investigations based on the Kirchhoff kinematical hypotheses of plates; in particular, modal and nilpotent transducers are discussed in detail. Based on the proposed distribution a discrete design for modal transducers is implemented, tested and verified on an experimental setup. For active control the modal sensors clearly identify the eigenmodes, whereas the modal actuators impose distributed eigenstrains in order to reduce the transverse plate vibrations. In contrast to the modal control, passive shunt damping works without requiring additional actuators or auxiliary power and can therefore act as an autonomous system, but it is less effective compensating the flexible vibrations. Exemplarily, an acryl glass plate disturbed by an arbitrary force initialized by a loudspeaker is investigated. Comparing the different methods their specific advantages are highlighted and a significant broadband reduction of the vibrations of up to -20dB is obtained.

Natural Vibrations of Rectangular Stiffened Plates with Inner Cutouts (유공 직사각형 보강판의 진동해석)

  • K.C.,Kim;S.Y.,Han;J.H.,Jung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.35-42
    • /
    • 1987
  • For the analysis of natural vibrations of a rectangular stiffened plate with inner cutouts, an application of the Rayleigh-Ritz method is investigated. In construction of the trial function for the Rayleigh quotient, only the outer boundary conditions are satisfied with combination of Euler beam functions. As to the modeling of stiffened plates for the energy calculations, a lumping stiffener-effects method and the orthotropic plate analogy are considered for the purpose of comparison. Some numerical results obtained by the Rayleigh-Ritz method are compared with results by experiments and the finite element method. The following are major conclusions; (1) With the lumping stiffener-effects modeling the Rayleigh-Ritz method gives good results of both natural frequencies and mode shapes. The orthotropic plate analogy in cases of regularly stiffened plates is of restrictive use i.e. acceptable for a small cutout. (2) The natural frequency of a stiffened plate with inner cutouts between stiffeners is higher than that of without cutouts and increase as the hole area ratio increases as long as there are no discontinuous stiffeners due to the cutout.

  • PDF

Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.575-585
    • /
    • 2020
  • Based on a refined shear deformation finite strip, transient vibrations of graphene oxide powder (GOP) reinforced plates due to external pulse loads have been investigated. The plate has uniformly and linearly distributed GOPs inside material structure. Applied pulse loads have been selected as sinusoidal, linear and blast types. Such pulse loads result in transient vibrations of the GOP-reinforced plates which are not explored before. Finite strip method (FSM) has been performed for solving the equations of motion and then inverse Laplace transform technique has been employed to derive transient responses due to pulse loading. It is reported in this study that the transient responses of GOP-reinforced plates are dependent on GOP dispersions, GOP volume fraction, type of pulse loading, loading time and load locations.

Wavenumber analyses of panel vibrations induced by transonic wall-bounded jet flow from an upstream high aspect ratio rectangular nozzle

  • Hambric, Stephen A.;Shaw, Matthew D.;Campbell, Robert L.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.515-528
    • /
    • 2019
  • The structural vibrations of a flat plate induced by fluctuating wall pressures within wall-bounded transonic jet flow downstream of a high-aspect ratio rectangular nozzle are simulated. The wall pressures are calculated using Hybrid RANS/LES CFD, where LES models the large-scale turbulence in the shear layers downstream of the nozzle. The structural vibrations are computed using modes from a finite element model and a time-domain forced response calculation methodology. At low flow speeds, the convecting turbulence in the shear layers loads the plate in a manner similar to that of turbulent boundary layer flow. However, at high nozzle pressure ratio discharge conditions the flow over the panel becomes transonic, and the shear layer turbulence scatters from shock cells just downstream of the nozzle, generating backward traveling low frequency surface pressure loads that also drive the plate. The structural mode shapes and subsonic and transonic surface pressure fields are transformed to wavenumber space to better understand the nature of the loading distributions and individual modal responses. Modes with wavenumber distributions which align well with those of the pressure field respond strongly. Negative wavenumber loading components are clearly visible in the transforms of the supersonic flow wall pressures near the nozzle, indicating backward propagating pressure fields. In those cases the modal joint acceptances include significant contributions from negative wavenumber terms.

Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates

  • Dehshahri, Kasra;Nejad, Mohammad Zamani;Ziaee, Sima;Niknejad, Abbas;Hadi, Amin
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.115-134
    • /
    • 2020
  • In this paper, the free vibrations analysis of the nanoplates made of three-directional functionally graded material (TDFGM) with small scale effects is presented. To study the small-scale effects on natural frequency, modified strain gradient theory (MSGT) has been used. Material properties of the nanoplate follow an arbitrary function that changes in three directions along the length, width and thickness of the plate. The equilibrium equations and boundary conditions of nanoplate are obtained using the Hamilton's principle. The generalized differential quadrature method (GDQM) is used to solve the governing equations and different boundary conditions for obtaining the natural frequency of nanoplate made of three-directional functionally graded material. The present model can be transformed into a couple stress plate model or a classic plate model if two or all parameters of the length scales set to zero. Finally, numerical results are presented to study the small-scale effect and heterogeneity constants and the aspect ratio with different boundary conditions on the free vibrations of nanoplates. To the best of the researchers' knowledge, in the literature, there is no study carried out into MSGT for free vibration analysis of FGM nanoplate with arbitrary functions.

Analytical solutions for vibrations of rectangular functionally graded Mindlin plates with vertical cracks

  • Chiung-Shiann Huang;Yun-En Lu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Analytical solutions to problems are crucial because they provide high-quality comparison data for assessing the accuracy of numerical solutions. Benchmark analytical solutions for the vibrations of cracked functionally graded material (FGM) plates are not available in the literature because of the high level of complexity of such solutions. On the basis of first-order shear deformation plate theory (FSDT), this study proposes analytical series solutions for the vibrations of FGM rectangular plates with side or internal cracks parallel to an edge of the plates by using Fourier cosine series and the domain decomposition technique. The distributions of FGM properties along the thickness direction are assumed to follow a simple power law. The proposed analytical series solutions are validated by performing comprehensive convergence studies on the vibration frequencies of cracked square plates with various crack lengths and under various boundary condition combinations and by performing comparisons with published results based on various plate theories and the theory of three-dimensional elasticity. The results reveal that the proposed solutions are in excellent agreement with literature results obtained using the Ritz method on the basis of FSDT. The paper also presents tabulations of the first six nondimensional frequencies of cracked rectangular Al/Al2O3 FGM plates with various aspect ratios, thickness-to-width ratios, crack lengths, and FGM power law indices under six boundary condition combinations, the tabulated frequencies can serve as benchmark data for assessing the accuracy of numerical approaches based on FSDT.