Browse > Article
http://dx.doi.org/10.12989/anr.2020.8.2.115

Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates  

Dehshahri, Kasra (Department of Mechanical Engineering, Yasouj University)
Nejad, Mohammad Zamani (Department of Mechanical Engineering, Yasouj University)
Ziaee, Sima (Department of Mechanical Engineering, Yasouj University)
Niknejad, Abbas (Department of Mechanical Engineering, Yasouj University)
Hadi, Amin (Cellular and Molecular Research Center, School of Medicine, Yasuj University of Medical Sciences)
Publication Information
Advances in nano research / v.8, no.2, 2020 , pp. 115-134 More about this Journal
Abstract
In this paper, the free vibrations analysis of the nanoplates made of three-directional functionally graded material (TDFGM) with small scale effects is presented. To study the small-scale effects on natural frequency, modified strain gradient theory (MSGT) has been used. Material properties of the nanoplate follow an arbitrary function that changes in three directions along the length, width and thickness of the plate. The equilibrium equations and boundary conditions of nanoplate are obtained using the Hamilton's principle. The generalized differential quadrature method (GDQM) is used to solve the governing equations and different boundary conditions for obtaining the natural frequency of nanoplate made of three-directional functionally graded material. The present model can be transformed into a couple stress plate model or a classic plate model if two or all parameters of the length scales set to zero. Finally, numerical results are presented to study the small-scale effect and heterogeneity constants and the aspect ratio with different boundary conditions on the free vibrations of nanoplates. To the best of the researchers' knowledge, in the literature, there is no study carried out into MSGT for free vibration analysis of FGM nanoplate with arbitrary functions.
Keywords
vibration; nanoplate; three-directional functionally graded material (TDFGM); modified strain gradient theory (MSGT); generalized differential quadrature method (GDQM); size effect;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Rajasekaran, S. and Khaniki, H.B. (2018), "Free vibration analysis of bi-directional functionally graded single/multi-cracked beams", Int. J. Mech. Sci., 144, 341-356. https://doi.org/10.1016/j.ijmecsci.2018.06.004   DOI
2 Ramsden, J.J. (2016), Chapter 1 - What is nanotechnology?, William Andrew Publishing, Oxford, UK.
3 Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, CRC press.
4 Rohani Rad, E. and Farajpour, M.R. (2019), "Influence of taxol and CNTs on the stability analysis of protein microtubules", J. Computat. Appl. Mech., 50(1), 140-147. 10.22059/JCAMECH.2019.277874.369
5 Nejad, M.Z. and Hadi, A. (2016b), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011   DOI
6 Nejad, M.Z. and Kashkoli, M.D. (2014), "Time-dependent thermocreep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux", Int. J. Eng. Sci., 82, 222-237. https://doi.org/10.1016/j.ijengsci.2014.06.006   DOI
7 Nejad, M.Z. and Rahimi, G. (2009), "Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load", Sci. Res. Essays, 4(3), 131-140.
8 Nejad, M.Z. and Rahimi, G.H. (2010), "Elastic analysis of FGM rotating cylindrical pressure vessels", J. Chinese Inst. Engr., 33(4), 525-530. https://doi.org/10.1080/02533839.2010.9671640   DOI
9 Nejad, M.Z., Rahimi, G. and Ghannad, M. (2009), "Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system", Mech., 77(3), 18-26.
10 Farajpour, M., Shahidi, A., Hadi, A. and Farajpour, A. (2018), "Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magnetoelectro-elastic nanofilms", Mech. Adv. Mater. Struct., 26(17), 1469-1481. https://doi.org/10.1080/15376494.2018.1432820
11 Fatehi, P. and Nejad, M.Z. (2014), "Effects of material gradients on onset of yield in FGM rotating thick cylindrical shells", Int. J. Appl. Mech., 6(4), 1450038. https://doi.org/10.1142/S1758825114500380   DOI
12 Ghannad, M. and Nejad, M.Z. (2010), "Elastic analysis of pressurized thick hollow cylindrical shells with clampedclamped ends", Mech., 85(5), 11-18.
13 Ghannad, M., Nejad, M.Z. and Rahimi, G. (2009), "Elastic solution of axisymmetric thick truncated conical shells based on first-order shear deformation theory", Mech., 79(5), 13-20.
14 Abouelregal, A. and Zenkour, A. (2019), "Vibration of FG viscoelastic nanobeams due to a periodic heat flux via fractional derivative model", J. Computat. Appl. Mech., 50(1), 148-156. https://doi.org/10.22059/JCAMECH.2019.277115.367
15 Adeli, M.M., Hadi, A., Hosseini, M. and Gorgani, H.H. (2017), "Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory", Eur. Phys. J. Plus, 132(9), 393. https://doi.org/10.1140/epjp/i2017-11688-0   DOI
16 She, G.-L., Yuan, F.-G., Ren, Y.-R., Liu, H.-B. and Xiao, W.-S. (2018b), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063   DOI
17 Seyyed Nosrati, A., Parvizi, A., Afzal, S.A. and Alimirzaloo, V. (2019), "Elasto-plastic solution for thick-walled spherical vessels with an inner FGM layer", J. Computat. Appl. Mech., 50(1), 1-13. 10.22059/JCAMECH.2017.239277.173
18 She, G.-L., Yuan, F.-G., Ren, Y.-R. and Xiao, W.-S. (2017), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005   DOI
19 She, G.-L., Yuan, F.-G. and Ren, Y.-R. (2018a), "On wave propagation of porous nanotubes", Int. J. Eng. Sci., 130, 62-74. https://doi.org/10.1016/j.ijengsci.2018.05.002   DOI
20 Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014a), "Effect of exponentially-varying properties on displacements and stresses in pressurized functionally graded thick spherical shells with using iterative technique", J. Solid Mech., 6(4), 366-377.
21 Shenas, A.G., Malekzadeh, P. and Ziaee, S. (2017), "Thermal buckling of rotating pre-twisted functionally graded microbeams with temperature-dependent material properties", Acta Mechanica, 228(3), 1115-1133. https://doi.org/10.1007/s00707-016-1759-2   DOI
22 She, G.-L., Ren, Y.-R., Yuan, F.-G. and Xiao, W.-S. (2018c), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009   DOI
23 She, G.-L., Yan, K.-M., Zhang, Y.-L., Liu, H.-B. and Ren, Y.-R. (2018d), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), 368. https://doi.org/10.1140/epjp/i2018-12196-5   DOI
24 Shenas, A.G. and Malekzadeh, P. (2016), "Free vibration of functionally graded quadrilateral microplates in thermal environment", Thin-Wall. Struct., 106, 294-315. https://doi.org/10.1016/j.tws.2016.05.001   DOI
25 Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032   DOI
26 Lu, C., Chen, W., Xu, R. and Lim, C.W. (2008), "Semi-analytical elasticity solutions for bi-directional functionally graded beams", Int. J. Solids Struct., 45(1), 258-275. https://doi.org/10.1016/j.ijsolstr.2007.07.018   DOI
27 Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Semi-analytical analysis for multi-directional functionally graded plates: 3-D elasticity solutions", Int. J. Numer. Methods Eng., 79(1), 25-44. https://doi.org/10.1002/nme.2555   DOI
28 Luttge, R. (2016), Chapter 4 - Nanotechnology, William Andrew Publishing.
29 Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015a), "Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading", Int. J. Eng. Sci., 89, 86-99. https://doi.org/10.1016/j.ijengsci.2014.12.004   DOI
30 Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014b), "Exact elastoplastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85, 47-57.   DOI
31 Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015b), "Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading", Compos. Struct., 122, 561-569. https://doi.org/10.1016/j.compstruct.2014.12.028   DOI
32 Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001   DOI
33 Nejad, M.Z., Jabbari, M. and Ghannad, M. (2017a), "A general disk form formulation for thermo-elastic analysis of functionally graded thick shells of revolution with arbitrary curvature and variable thickness", Acta Mechanica, 228(1), 215-231. https://doi.org/10.1007/s00707-016-1709-z   DOI
34 Mindlin, R.D. (1965), "Second gradient of strain and surfacetension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5   DOI
35 Afshin, A., Nejad, M.Z. and Dastani, K. (2017), "Transient thermoelastic analysis of FGM rotating thick cylindrical pressure vessels under arbitrary boundary and initial conditions", J. Computat. Appl. Mech., 48(1), 15-26. https://doi.org/10.22059/JCAMECH.2017.233643.144
36 Abazari, A.M., Safavi, S.M., Rezazadeh, G. and Villanueva, L.G. (2015), "Size Effects on Mechanical Properties of Micro/Nano Structures", arXiv preprint arXiv:1508.01322.
37 Malekzadeh, P., Golbahar Haghighi, M.R. and Shojaee, M. (2014), "Nonlinear free vibration of skew nanoplates with surface and small scale effects", Thin-Wall. Struct., 78, 48-56. https://doi.org/10.1016/j.tws.2013.10.027   DOI
38 Mazarei, Z., Nejad, M.Z. and Hadi, A. (2016), "Thermo-elastoplastic analysis of thick-walled spherical pressure vessels made of functionally graded materials", Int. J. Appl. Mech., 8(4), 1650054. https://doi.org/10.1142/S175882511650054X   DOI
39 Mehralian, F. and Tadi Beni, Y. (2018), "Buckling of bimorph functionally graded piezoelectric cylindrical nanoshell", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 232(19), 3538-3550. https://doi.org/10.1177/0954406217738033   DOI
40 Mirsalehi, M., Azhari, M. and Amoushahi, H. (2017), "Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method", Eur. J. Mech.-A/Solids, 61, 1-13. https://doi.org/10.1016/j.euromechsol.2016.08.008   DOI
41 Hosseini, M., Gorgani, H.H., Shishesaz, M. and Hadi, A. (2017), "Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory", Int. J. Appl. Mech., 9(6), 1750087. https://doi.org/10.1142/S1758825117500879   DOI
42 Hosseini, M., Hadi, A., Malekshahi, A. and Shishesaz, M. (2018), "A review of size-dependent elasticity for nanostructures", J. Computat. Appl. Mech., 49(1), 197-211. 10.22059/JCAMECH.2018.259334.289
43 Akgoz, B. and Civalek, O. (2013a), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020   DOI
44 Nejad, M.Z., Jabbari, M. and Hadi, A. (2017b), "A review of functionally graded thick cylindrical and conical shells", J. Computat. Appl. Mech., 48(2), 357-370. https://doi.org/10.22059/JCAMECH.2017.247963.220
45 Nejad, M.Z., Hadi, A. and Farajpour, A. (2017c), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., Int. J., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161
46 Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010   DOI
47 Abouelregal, A. (2019), "Rotating magneto-thermoelastic rod with finite length due to moving heat sources via Eringen's nonlocal model", J. Computat. Appl. Mech., 50(1), 118-126. https://doi.org/10.22059/JCAMECH.2019.275893.360
48 Ajri, M. and Fakhrabadi, M.M.S. (2018), "Nonlinear free vibration of viscoelastic nanoplates based on modified couple stress theory", J. Computat. Appl. Mech., 49(1), 44-53. https://doi.org/10.22059/JCAMECH.2018.228477.129
49 Akgoz, B. and Civalek, O. (2013b), "Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM)", Compos. Part B: Eng., 55, 263-268. https://doi.org/10.1016/j.compositesb.2013.06.035   DOI
50 Alizada, A. and Sofiyev, A. (2011), "On the mechanics of deformation and stability of the beam with a nanocoating", J. Reinf. Plast. Compos., 30(18), 1583-1595. https://doi.org/10.1177/0731684411428382   DOI
51 Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V. and Sahmani, S. (2015), "Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory", Eur. J. Mech.-A/Solids, 49, 251-267. https://doi.org/10.1016/j.euromechsol.2014.07.014   DOI
52 Hadi, A., Nejad, M.Z. and Hosseini, M. (2018a), "Vibrations of three-dimensionally graded nanobeams", Int. J. Eng. Sci., 128, 12-23. https://doi.org/10.1016/j.ijengsci.2018.03.004   DOI
53 Ghorbani Shenas, A., Ziaee, S. and Malekzadeh, P. (2017), "Nonlinear vibration analysis of pre-twisted functionally graded microbeams in thermal environment", Thin-Wall. Struct., 118, 87-104. https://doi.org/10.1016/j.tws.2017.05.003   DOI
54 Haciyev, V., Sofiyev, A. and Kuruoglu, N. (2018), "Free bending vibration analysis of thin bidirectionally exponentially graded orthotropic rectangular plates resting on two-parameter elastic foundations", Compos. Struct., 184, 372-377. https://doi.org/10.1016/j.compstruct.2017.10.014   DOI
55 Haciyev, V., Sofiyev, A. and Kuruoglu, N. (2019), "On the free vibration of orthotropic and inhomogeneous with spatial coordinates plates resting on the inhomogeneous viscoelastic foundation", Mech. Adv. Mater. Struct., 26(10), 886-897. https://doi.org/10.1080/15376494.2018.1430271   DOI
56 Javidi, R., Haghshenas Gorgani, H. and Mahdavi Adeli, M. (2019), "Size-dependent on vibration and flexural sensitivity of atomic force microscope", J. Computat. Appl. Mech., 50(1), 191-196. https://doi.org/10.22059/JCAMECH.2018.250335.233
57 Huang, Y., Yang, L.-E. and Luo, Q.-Z. (2013), "Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section", Compos. Part B: Eng., 45(1), 1493-1498. https://doi.org/10.1016/j.compositesb.2012.09.015   DOI
58 Jabbari, M., Nejad, M.Z. and Ghannad, M. (2015), "Thermoelastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading", Int. J. Eng. Sci., 96, 1-18. https://doi.org/10.1016/j.ijengsci.2015.07.005   DOI
59 Jabbari, M., Nejad, M.Z. and Ghannad, M. (2016), "Thermoelastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness", Compos. Part B: Eng., 96, 20-34. https://doi.org/10.1016/j.compositesb.2016.04.026   DOI
60 Karami, B., Janghorban, M. and Tounsi, A. (2018), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025   DOI
61 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory", Int. J. Eng. Sci., 144, 103143. https://doi.org/10.1016/j.ijengsci.2019.103143   DOI
62 Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011), "A new exact analytical approach for free vibration of Reissner- Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002   DOI
63 Hadi, A., Nejad, M.Z., Rastgoo, A. and Hosseini, M. (2018b), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., Int. J., 26(6), 663-672. https://doi.org/10.12989/scs.2018.26.6.663
64 Hadi, A., Rastgoo, A., Haghighipour, N. and Bolhassani, A. (2018c), "Numerical modelling of a spheroid living cell membrane under hydrostatic pressure", J. Statist. Mech.: Theory Experim., 2018(8), 083501. https://doi.org/10.1088/1742-5468/aad369   DOI
65 Hosseini-Hashemi, S. and Nazemnezhad, R. (2013), "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects", Compos. Part B: Eng., 52, 199-206. https://doi.org/10.1016/j.compositesb.2013.04.023   DOI
66 Ghannad, M., Nejad, M.Z., Rahimi, G. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., Int. J., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105   DOI
67 Kashkoli, M.D. and Nejad, M.Z. (2018), "Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells", Steel Compos. Struct., Int. J., 28(3), 349-362. https://doi.org/10.12989/scs.2018.28.3.349
68 Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2017), "Timedependent thermomechanical creep behavior of FGM thick hollow cylindrical shells under non-uniform internal pressure", Int. J. Appl. Mech., 9(6), 1750086. https://doi.org/10.1142/S1758825117500867   DOI
69 Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2018), "Thermomechanical creep analysis of FGM thick cylindrical pressure vessels with variable thickness", Int. J. Appl. Mech., 10(1), 1850008. https://doi.org/10.1142/S1758825118500084   DOI
70 Kolahchi, R., Bidgoli, A.M.M. and Heydari, M.M. (2015), "Sizedependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., Int. J., 55(5), 1001-1014. https://doi.org/10.12989/sem.2015.55.5.1001   DOI
71 Ghannad, M., Rahimi, G.H. and Nejad, M.Z. (2013), "Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials", Compos. Part B: Eng., 45(1), 388-396. https://doi.org/10.1016/j.compositesb.2012.09.043   DOI
72 Gharibi, M., Nejad, M.Z. and Hadi, A. (2017), "Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius", J. Computat. Appl. Mech., 48(1), 89-98. https://doi.org/10.22059/JCAMECH.2017.233633.143
73 Lam, D.C., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X   DOI
74 Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R., Mohammadi, V. and Shahabodini, A. (2016), "Size-dependent bending, buckling and free vibration analyses of microscale functionally graded mindlin plates based on the strain gradient elasticity theory", Latin Am. J. Solids Struct., 13(4), 632-664. https://doi.org/10.1590/1679-78252322   DOI
75 Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455   DOI
76 ohammadi, M., Hosseini, M., Shishesaz, M., Hadi, A. and Rastgoo, A. (2019), "Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads", Eur. J. Mech.-A/Solids, 77, 103793. https://doi.org/10.1016/j.euromechsol.2019.05.008   DOI
77 Nejad, M.Z. and Fatehi, P. (2015), "Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials", Int. J. Eng. Sci., 86, 26-43. https://doi.org/10.1016/j.ijengsci.2014.10.002   DOI
78 Nejad, M.Z. and Hadi, A. (2016a), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005   DOI
79 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Naddaf Oskouei, A. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016   DOI
80 Kong, S., Zhou, S., Nie, Z. and Wang, K. (2009), "Static and dynamic analysis of micro beams based on strain gradient elasticity theory", Int. J. Eng. Sci., 47(4), 487-498. https://doi.org/10.1016/j.ijengsci.2008.08.008   DOI
81 Lazopoulos, K. (2004), "On the gradient strain elasticity theory of plates", Eur. J. Mech-A/Solids, 23(5), 843-852. https://doi.org/10.1016/j.euromechsol.2004.04.005   DOI
82 Lei, J., He, Y., Guo, S., Li, Z. and Liu, D. (2016), "Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity", Aip Advances, 6(10), 105202. https://doi.org/10.1063/1.4964660   DOI
83 Zeighampour, H. and Tadi Beni, Y. (2015), "Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory", Appl. Mathe. Model., 39(18), 5354-5369. https://doi.org/10.1016/j.apm.2015.01.015   DOI
84 Zargaripoor, A., Daneshmehr, A., Isaac Hosseini, I. and Rajabpoor, A. (2018), "Free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory using finite element method", J. Computat. Appl. Mech., 49(1), 86-101. https://doi.org/10.22059/JCAMECH.2018.248906.223
85 Zeighampour, H. and Tadi Beni, Y. (2014a), "Analysis of conical shells in the framework of coupled stresses theory", Int. J. Eng. Sci., 81, 107-122. https://doi.org/10.1016/j.ijengsci.2014.04.008   DOI
86 Zeighampour, H. and Tadi Beni, Y. (2014b), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004   DOI
87 Zeighampour, H., Tadi Beni, Y. and Botshekanan Dehkordi, M. (2018), "Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory", Thin-Wall. Struct., 122, 378-386. https://doi.org/10.1016/j.tws.2017.10.037   DOI
88 Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 70(20), 205430. https://doi.org/10.1103/PhysRevB.70.205430   DOI
89 Zhao, L., Zhu, J. and Wen, X.D. (2016), "Exact analysis of bidirectional functionally graded beams with arbitrary boundary conditions via the symplectic approach", Struct. Eng. Mech., Int. J., 59(1), 101-122. https://doi.org/10.12989/sem.2016.59.1.101   DOI
90 Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013   DOI
91 Udupa, G., Rao, S.S. and Gangadharan, K. (2014), "Functionally graded composite materials: an overview", Procedia Materials Science, 5, 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442   DOI
92 Ziegler, T. and Kraft, T. (2014), "Functionally graded materials with a soft surface for improved indentation resistance: Layout and corresponding design principles", Computat. Mater. Sci., 86, 88-92. https://doi.org/10.1016/j.commatsci.2014.01.032   DOI
93 Thai, S., Thai, H.-T., Vo, T.P. and Patel, V.I. (2017), "Sizedependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis", Comput. Struct., 190, 219-241. https://doi.org/10.1016/j.compstruc.2017.05.014   DOI
94 Trinh, L.C., Vo, T.P., Thai, H.-T. and Nguyen, T.-K. (2018), "Sizedependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions", Compos. Part B: Eng., 134, 225-245. https://doi.org/10.1016/j.compositesb.2017.09.054   DOI
95 Van Do, T., Nguyen, D.K., Duc, N.D., Doan, D.H. and Bui, T.Q. (2017), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin-Wall. Struct., 119, 687-699. https://doi.org/10.1016/j.tws.2017.07.022   DOI
96 Wang, B., Zhou, S., Zhao, J. and Chen, X. (2011), "A sizedependent Kirchhoff micro-plate model based on strain gradient elasticity theory", Eur. J. Mech.-A/Solids, 30(4), 517-524. https://doi.org/10.1016/j.euromechsol.2011.04.001   DOI
97 Wang, B., Huang, S., Zhao, J. and Zhou, S. (2016a), "Reconsiderations on boundary conditions of Kirchhoff microplate model based on a strain gradient elasticity theory", Appl. Mathe. Model., 40(15-16), 7303-7317. https://doi.org/10.1016/j.apm.2016.03.014   DOI
98 Li, L. and Hu, Y. (2017a), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025   DOI
99 Li, L. and Hu, Y. (2016a), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011   DOI
100 Li, L. and Hu, Y. (2016b), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Computat. Mater. Sci., 112, 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044   DOI
101 Li, L. and Hu, Y. (2017b), "Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Compos. Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097   DOI
102 Li, X. and Luo, Y. (2017), "Size-dependent postbuckling of piezoelectric microbeams based on a modified couple stress theory", Int. J. Appl. Mech., 9(4), 1750053. https://doi.org/10.1142/S1758825117500533   DOI
103 Li, A., Zhou, S., Zhou, S. and Wang, B. (2014), "A size-dependent model for bi-layered Kirchhoff micro-plate based on strain gradient elasticity theory", Compos. Struct., 113, 272-280. https://doi.org/10.1016/j.compstruct.2014.03.028   DOI
104 Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014   DOI
105 Zarezadeh, E., Hosseini, V. and Hadi, A. (2019), "Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory", Mech. Based Des. Struct. Mach., 1-16. https://doi.org/10.1080/15397734.2019.1642766
106 Wang, Z.-h., Wang, X.-h., Xu, G.-d., Cheng, S. and Zeng, T. (2016b), "Free vibration of two-directional functionally graded beams", Compos. Struct., 135, 191-198. https://doi.org/10.1016/j.compstruct.2015.09.013   DOI
107 Yang, F., Chong, A., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X   DOI
108 Yang, T., Tang, Y., Li, Q. and Yang, X.-D. (2018), "Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams", Compos. Struct., 204, 313-319. https://doi.org/10.1016/j.compstruct.2018.07.045   DOI
109 Zargaripoor, A. and Bahrami, A. (2018), "Free vibration and buckling analysis of third-order shear deformation plate theory using exact wave propagation approach", J. Computat. Appl. Mech., 49(1), 102-124. https://doi.org/10.22059/JCAMECH.2018.249468.227
110 Wang, B., Zhao, J. and Zhou, S. (2010), "A micro scale Timoshenko beam model based on strain gradient elasticity theory", Eur. J. Mech.-A/Solids, 29(4), 591-599. https://doi.org/10.1016/j.euromechsol.2009.12.005   DOI
111 Thai, H.-T. and Choi, D.-H. (2013), "Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory", Compos. Struct., 95, 142-153. https://doi.org/10.1016/j.compstruct.2012.08.023   DOI
112 Shishesaz, M., Hosseini, M., Tahan, K.N. and Hadi, A. (2017), "Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory", Acta Mechanica, 228(12), 4141-4168. https://doi.org/10.1007/s00707-017-1939-8   DOI
113 Cho, J. and Oden, J.T. (2000), "Functionally graded material: a parametric study on thermal-stress characteristics using the Crank-Nicolson-Galerkin scheme", Comput. Methods Appl. Mech. Eng., 188(1-3), 17-38. https://doi.org/10.1016/S0045-7825(99)00289-3   DOI
114 Dehghan, M., Nejad, M.Z. and Moosaie, A. (2016), "Thermo-electro-elastic analysis of functionally graded piezoelectric shells of revolution: Governing equations and solutions for some simple cases", Int. J. Eng. Sci., 104, 34-61. https://doi.org/10.1016/j.ijengsci.2016.04.007   DOI
115 Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Computat. Mater. Sci., 61, 257-265. https://doi.org/10.1016/j.commatsci.2012.04.001   DOI
116 Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021   DOI
117 Steinberg, M.A. (1986), "Materials for aerospace", Scientific American, 255(4), 66-73.   DOI
118 Tadi Beni, Y. (2016), "Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams", J. Intel. Mater. Syst. Struct., 27(16), 2199-2215. https://doi.org/10.1177/1045389X15624798   DOI
119 Nejad, M.Z., Taghizadeh, T., Mehrabadi, S.J. and Herasati, S. (2017d), "Elastic analysis of carbon nanotube-reinforced composite plates with piezoelectric layers using shear deformation theory", Int. J. Appl. Mech., 9(1), 1750011.   DOI
120 Nejad, M.Z., Alamzadeh, N. and Hadi, A. (2018a), "Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition", Compos. Part B: Eng., 154, 410-422. https://doi.org/10.1016/j.compositesb.2018.09.022   DOI
121 Ebrahimi, F. and Dabbagh, A. (2017b), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058   DOI
122 Deng, H. and Cheng, W. (2016), "Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams", Compos. Struct., 141, 253-263. https://doi.org/10.1016/j.compstruct.2016.01.051   DOI
123 Ebrahimi, F. and Barati, M.R. (2017), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092   DOI
124 Ebrahimi, F. and Dabbagh, A. (2017a), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magnetoelectro-elastic nanoplates", Mater. Res. Express, 4(2), 025003. https://doi.org/10.1088/2053-1591/aa55b5   DOI
125 Ebrahimi, F. and Dabbagh, A. (2019), "A comprehensive review on modeling of nanocomposite materials and structures", J. Computat. Appl. Mech., 50(1), 197-209. https://doi.org/10.22059/JCAMECH.2019.282388.405
126 Hosseini, M., Shishesaz, M., Tahan, K.N. and Hadi, A. (2016), "Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials", Int. J. Eng. Sci., 109, 29-53. https://doi.org/10.1016/j.ijengsci.2016.09.002   DOI
127 Norouzzadeh, A. and Ansari, R. (2018), "Isogeometric vibration analysis of functionally graded nanoplates with the consideration of nonlocal and surface effects", Thin-Wall. Struct., 127, 354-372. https://doi.org/10.1016/j.tws.2017.11.040   DOI
128 Nejad, M.Z., Hadi, A., Omidvari, A. and Rastgoo, A. (2018b), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory", Struct. Eng. Mech., Int. J., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417
129 Nguyen, T.-T. and Lee, J. (2018), "Interactive geometric interpretation and static analysis of thin-walled bi-directional functionally graded beams", Compos. Struct., 191, 1-11. https://doi.org/10.1016/j.compstruct.2018.01.064   DOI
130 Nie, G. and Zhong, Z. (2010), "Dynamic analysis of multidirectional functionally graded annular plates", Appl. Mathe. Model., 34(3), 608-616. https://doi.org/10.1016/j.apm.2009.06.009   DOI
131 Papargyri-Beskou, S., Giannakopoulos, A. and Beskos, D. (2010), "Variational analysis of gradient elastic flexural plates under static loading", Int. J. Solids Struct., 47(20), 2755-2766. https://doi.org/10.1016/j.ijsolstr.2010.06.003   DOI
132 Preethi, K., Raghu, P., Rajagopal, A. and Reddy, J. (2018), "Nonlocal nonlinear bending and free vibration analysis of a rotating laminated nano cantilever beam", Mech. Adv. Mater. Struct., 25(5), 439-450. https://doi.org/10.1080/15376494.2016.1278062   DOI
133 Pydah, A. and Batra, R. (2017), "Shear deformation theory using logarithmic function for thick circular beams and analytical solution for bi-directional functionally graded circular beams", Compos. Struct., 172, 45-60. https://doi.org/10.1016/j.compstruct.2017.03.072   DOI
134 Pydah, A. and Sabale, A. (2017), "Static analysis of bi-directional functionally graded curved beams", Compos. Struct., 160, 867-876. https://doi.org/10.1016/j.compstruct.2016.10.120   DOI
135 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803   DOI
136 Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008   DOI