• Title/Summary/Keyword: plate tectonic

Search Result 88, Processing Time 0.024 seconds

Volcanism and Petrogenesis of Dodong Basaltic Rocks in the Ulleung Island, East Sea (울릉도 도동현무암질암류의 화산작용과 암석성인)

  • Hwang, Sang Koo;Kim, Jae Ho;Jang, Yundeuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.361-371
    • /
    • 2017
  • We investigated geochemical characteristics of the Dodong Basaltic Rocks in the lower part of the Ulleung Island. They have lithological range of alkali basalt to trachybasalt, belonging to Na and K subseries of alkaline series. They mostly fall within the field of alkalline within-plate basalts on tectonic discrimination diagrams, and then plot in the field of oceanic island basalt (OIB). Geochemically, extension of lithospheric mantle and asthenospheric upwelling after East Sea under an Cenozoic extensional tectonic setting might be a heat source for partial melting of the enriched lithospheric mantle, which might generate the basaltic magma. But we cannot exclude that mantle plume might also be a heat source for melting of the lithospheric mantle.

Indian Earthquake(2001. 1. 26) and its damaged charateristics (2001. 1. 26 인도지진 및 그 피해 특성)

  • 전명순
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.3-9
    • /
    • 2001
  • The Ms 7.7 earthquake of Gujarat, India occured early in the morning of January 26, 2001. Subsequent of the earthquake, as a Seismologist at Korea Institute of Geoscience and Mineral Resources(KIGAM), I have been visited epicentral area here reporting the impressions and initial observations collected during the period of Feb. 07 to 13. The trace of surface faulting was not founded. However the mechanism of the earthquake suggests the indenting Indian plate to the Eurasian plate was the tectonic background of this earthquake. Large casualties compare with the magnitude and focal depth of the event, seems due to the poor construction of the typical ordinary Indian housing structure. The wall and roof of the house are very thick to avoid high temperature of the epicentral region.

  • PDF

Crustal Movement at Ol Doinyo Lengai based on GPS Measurements

  • Meshili, Valerie Ayubu;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.401-406
    • /
    • 2020
  • Continuously monitoring of Horizontal and Vertical movements in vulnerable areas due to earthquakes and volcanic activities is vital. These geohazard activities are the result of a slow deformation rate at the tectonic plate boundaries. The recent development of GPS (Global Positioning System) technology has made it possible to attain a millimeter level changes in the Earth's crust. This study used continuously observed GPS data at the flank of Ol Doinyo Lengai volcanic Mountain to determine crustal motion caused by impinging volcano from mantle convention. We analyzed 8 GPS observed from June 2016 to Dec 2019 using a well-documented Global Kalman Filter GAMIT/GLOBK software. The resulting velocity from GAMIT/GLOBK analysis was then used to compute the relative motion of our study area with respect to Nubia plate. Our analysis discovered a minor motion of less than 5mm/year in both horizontal and vertical components.

Stratigraphy of the Kachi-1 Well, Kunsan Basin, Offshore Western Korea (한국 서해 대륙붕 군산분지 까치-1공의 층서)

  • Ryu, In-Chang;Kim, Tae-Hoon
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.473-490
    • /
    • 2007
  • Strata of the Kachi-1 well, Kunsan Basin, offshore western Korea, were analyzed by using integrated stratigraphy approach. As a result, five distinct unconformity-bounded units are recognized in the well: Triassic, Late Jurassic-Early Cretaceous, Early Cretaceous, Late Cretaceous, and Middle Miocene units. Each unit represents a tectono-stratigraphic unit that provides time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of the Kunsan Basin. In the late Late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of these wrench faults until the Late Cretaceous caused a mega-shear in the basin, forming a large-scale pull-apart basin. However, in the Early Tertiary, the Indian Plate began to collide with the Eurasian Plate, forming a mega-suture zone. This orogenic event, namely the Himalayan Orogeny, continued by late Eocene and was probably responsible for initiation of right-lateral motion of the Tan-Lu fault system. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the Kunsan Basin. Thus, the late Eocene to Oligocene was the main period of severe tectonic modification of the basin. After the Oligocene, the Kunsan Basin has maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basin.

Cyclic Igneous Activities During the Late Paleozoic to Early Cenozoic Period Over the Korean Peninsula (고생대말-신생대초 기간에 일어난 한반도의 주기적 화성활동)

  • Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.193-202
    • /
    • 2012
  • There were three cycles of igneous activities from the late Paleozoic to early Cenozoic; Permian to Triassic, Jurassic, and Cretaceous to Paleogene. After the beginning of each igneous activity cycle, igneous activity became more frequent until its climax. It is noteworthy that A-type magmatisms are reported from near the ends of the all three igneous activity cycles. In addition, adakitic magmatisms occurred at the beginning of both the Permian-Triassic and the Cretaceous-Paleogene cycles. Most of the igneous activities during the late Paleozoic to early Cenozoic period were subduction-related. Therefore, transitions among beginning, proceeding, and closing of the igneous activity cycles would be intimately related with changes in directions of plate movements. In this context, I suggest following hypotheses. The closing of the Permian-Triassic igneous cycle was possibly a consequence of radical adjustment of plate motion occurred due to continental collision between north and south China blocks. Considering that no appreciable tectonic activities were recognized from the east Asian continent at the closing of the Jurassic igneous cycle, it seems that one of the strong events related with Gondwanaland-breakup and subsequent birth of the new oceans, which might cause sudden adjustments of plate motions. The closing of the Cretaceous-Paleogene igneous cycle seems to be caused as a consequence of the collision between India and Asia continents. Meanwhile, adakitic igneous bodies emplaced at the beginnings of the Permian-Triassic and Cretaceous-Paleogene cycles could be products of slab-melting during the early stages of the subduction.

Geochemical Study of the Cretaceous Granitic Rocks in Yeosu Area (여수 지역에 분포하는 백악기 화강암류에 대한 지화학적 연구)

  • Wee, Soo-Meen;Kim, Eun-Hyo
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.267-281
    • /
    • 2009
  • Cretaceous intrusive and extrusive rocks are widely distributed in the southern part of the Korean peninsula, possibly the result of intensive magmatism which occurred in response to subduction of the Pacific plate beneath the northeastern part of the Eurasian plate. Geochemical and petrological study on the Cretaceous granitic rocks of the Yeosu area were carried out in order to constrain the petrogenesis of the granitic rocks and to establish the paleotectonic environment of the southwestern part of the Korean peninsula. Igneous rocks of the Yeosu area consist of diorite, hornblende biotite pite and micrographic granite. Chondrite normalized REE patterns show generally enriched in LREE ($(La/Lu)^{cN}$=4.2-13.3). Diorites show flat to slight negative Eu anomalies while micrographic granites have strong negative Eu anomalies. The ${\Sigma}REE$ of the granites are 76.2-235 ppm, which corresponds to the range of the continental margin granite. Whole rock chemical data of the granitic rocks from the Yeosu area indicate that the rocks have characteristics of calc-alkaline series in the subalkaline field. On the A/NK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at continental margin during the subduction of Pacific plate.

Subdivision of Precambrian Time and Precambrian Stratigraphy of North-eastern Asia and some problems on the Korean Geological terms (선캠브리아의 지질시대 구분 및 동북 아시아 선캠브리아의 층서와 이에 관한 우리말 용어의 문제점)

    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 1996
  • The increament of crustal thickness, continental growth and evolution, plate tectonic movements, and mega-impacts of meteorites have been worldwidely studied in the subdivision of Precambrian. In many subdivision methods of Precambrian Eon and Eonthem, the division based on the principle of the Plate tctonic movement referred internationally, is as follows, $L^AT_EX$ The rationality of this subdivision and some problems in the currently adopted stratigraphic subdivision of Precambrian Eonthem will by commented, and the validity of English and Korean Geological terminology on the Precambrian stratigraphy of northeastern Asia will be discussed also.

  • PDF

The Source Parameters of Offshore Earthquakes with Magnitude Larger than 4.0 Nearby Sinan (신안 앞바다 인근 규모 4.0 이상 지진들의 지진원 상수)

  • Choi, Hoseon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.213-219
    • /
    • 2014
  • The source parameters of four earthquakes with magnitude larger than 4.0 nearby the offshore Sinan are analyzed. The waveform inversion method is used for analyzing the source parameters of two events (20 August 2012 and 21 April 2013) with C&B and AK135-c crustal velocity structure models. The source parameters of the other two events (26 July 1994 and 23 March 2003) are obtained from references. Focal mechanisms of the events are strike slip faulting or strike slip faulting with a thrust component. The directions of P-axes of the events are ENE-WSW or NE-SW which are similar to previous studies on P-axes in and around the Korean peninsula. With regard to the events nearby the offshore Sinan, the regional stress, rather than being local stress, is seen to be the result of the combination of tectonic forces from the compression of plates colliding to the Eurasian Plate.

Geological Safety Evaluation and Monitoring of Nuclear Facility Sites in South Korea

  • Lee, Hyunwoo;Woo, Hyeon Dong;Chun, Hyun Ju;Im, Chang-Bock
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.609-613
    • /
    • 2014
  • The Korean Peninsula, located at the southeastern tip of the Eurasian Plate, is known to be tectonically stable, and no critical evidence has yet been found that would override the safety design of nuclear facilities in South Korea. Because a nuclear power plant, like other major social overhead capital facilities, could cause great damage to both the environment and society through an unexpected tectonic event, even one of extremely low probability, like the Fukushima accident, a defense-in-depth safety approach is required in geological and geotechnical site safety evaluation for nuclear projects. This paper introduces the regulatory procedures that are in place to confirm nuclear site safety and site monitoring (e.g., earthquakes and groundwater) systems applied to nuclear facilities in order to reduce inherent uncertainties within the site safety review of geological and seismological issues related with a NPP project.

Petrology, Geochemistry and Tectonic Implication of the A-type Daegang granite in the Namwon area, Southwestern part of the Korean Peninsula (한반도 남서부 남원 일대에 분포하는 A형 대강 화강암의 암석학, 지화학 및 지구조적 의미)

  • Kim, Yong-Jun;Cho, Deung-Lyong;Lee, Chang-Shin
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.399-413
    • /
    • 1998
  • Daegang granite is located around the Namwon-gun, Cheolabuk-do, and is an elongate stock $(80 km^{2})$ in the NNE-SSW direction. Daegang granite has the very same mineralogical and geochemical characteristics as those of the typical A-type granites; (1) it is a one feldspar hypersolvus granite, and is classified as an alkali feldspar granite in the lUGS scheme, (2) has small amounts of Fe-rich biotite (annite) and alkali amphibole (ribeckite) that are late in the crystallization sequence of the granitic magma, (3) always contains opaque oxides, fluorite and zircon, (4) shows high and quite homogeneous $SiO_2$, content (mostly 72~77 wt.%) and $(Na_{2}O+K_{2}O)/Al_{2}O_{3}$ ratio (0.90~0.98), (5) contains high Ga, lOOOO*Ga/Ai, $K_{2}O+Na_{2}O$, $(K_{2}O+Na_{2}O)/CaO$, $K_{2}O/MgO$, FeO/MgO, agpaitic index, Zr, Nb, Ce, Y, Zn value or ratio that resemble to those of the Australian A-type granites (Whalen et al., 1987), and (6) has enriched LREE and HREE that show flat variation pattern with slightly depleted in HREE and profound Eu anomalies (Eu/Eu*=0.04~0.l4). In the tectonic discrimination diagrams of Pearce et al. (1984) and Eby (1992), Daegang granite is classified as a within plate granite and $A_{2}-type$.

  • PDF