• Title/Summary/Keyword: plate motion model

Search Result 203, Processing Time 0.031 seconds

Nonlinear dynamic response of axially moving GPLRMF plates with initial geometric imperfection in thermal environment under low-velocity impact

  • G.L. She;J.P. Song
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.357-370
    • /
    • 2024
  • Due to the fact that the mechanism of the effects of temperature and initial geometric imperfection on low-velocity impact problem of axially moving plates is not yet clear, the present paper is to fill the gap. In the present paper, the nonlinear dynamic behavior of axially moving imperfect graphene platelet reinforced metal foams (GPLRMF) plates subjected to lowvelocity impact in thermal environment is analyzed. The equivalent physical parameters of GPLRMF plates are estimated based on the Halpin-Tsai equation and the mixing rule. Combining Kirchhoff plate theory and the modified nonlinear Hertz contact theory, the nonlinear governing equations of GPLRMF plates are derived. Under the condition of simply supported boundary, the nonlinear control equation is discretized with the help of Gallekin method. The correctness of the proposed model is verified by comparison with the existing results. Finally, the time history curves of contact force and transverse center displacement are obtained by using the fourth order Runge-Kutta method. Through detailed parameter research, the effects of graphene platelet (GPL) distribution mode, foam distribution mode, GPL weight fraction, foam coefficient, axial moving speed, prestressing force, temperature changes, damping coefficient, initial geometric defect, radius and initial velocity of the impactor on the nonlinear impact problem are explored. The results indicate that temperature changes and initial geometric imperfections have significant impacts.

Research on the Development of Automated Multifunction-Integrated Motion Bed (자동화된 다기능 통합 전동 침대 개발에 대한 연구)

  • Lee, Youngdae;Choi, Moonsoo;Jang, Ilhwan;Kim, Chang-Young;Choi, Dong-Soo;Kim, Minsung;Kim, Wonjoon;Kim, Dong-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.215-222
    • /
    • 2018
  • Recently, various motion beds have been actively developed and popularized. The motion bed has the functions of height adjustment, back plate rising, knee lifting, tilt function and left / right rotation, and the remote control can conveniently be used by the patient himself or the caregiver to move the patient. However, since the medical bed for use does not have a function of preventing pressure ulcers, exchanging sheets, and transferring patients, it is necessary to disperse body pressure by using a pressure ulcer prevention matrix to prevent pressure ulcers. However, it is accompanied by muscle strength and hard work, and nurses are avoiding difficult nursing care. In this study, we developed the first prototype in the world and confirmed that the system works normally with the goal of developing multifunctional beds that automatically perform the prevention of bed sores, the exchange of sheets and the transfer of patients in order to facilitate such nursing work. It is anticipated that the proposed multifunctional motorized bed in the future will be a model of a medical robot for smart healthcare.

The Simulation and Experiment of Flexible Media with High Exit Velocity (고속의 출구속도를 가지는 유연매체의 거동해석 및 실험)

  • Hong, Sung-Kwon;Jee, Jung-Geun;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.380-383
    • /
    • 2006
  • The media transport system is used in a printer, a ATM(Automated Tellor Machine), and so on. The media transport system has many problems through miniaturization and rapid transportation of these machines. In the paper feeding mechanism, it is important to feed the sheet without jamming under any conditions. To avoid sheet jamming, first we need to predict the behavior of the sheet exactly. In this paper, the analysis of media behavior is based on J. Stolte's studies. In all of OA machines, a flexible beam or plate is pushed from the channel. The motion may be constrained by guides. This leads to a transient and geometrically nonlinear problem. The behavior of paper is simulated by dynamic elastica theory. The shape of guide is represented by parametric cubic curve. But J. Stolte's studies did not considered contact condition between sheet and guide. So Klarbring's Model. will be applied. And the analysis of flexible media has to include aerodynamic effect for more exact behavior analysis, because the flexible media can be deformed drastically by a little force. Therefore aerodynamic force must be applied to the governing equation. Lastly, the simulation of this model is performed, and the experiment is performed for verification of this model. The experimental results of low exit velocity are consistent with the simulation results, however experimental results of high exit velocity do not agree well with analytical results. The reason is that there may be other effects like nip Phenomena

  • PDF

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.

Vibration analysis of FG porous rectangular plates reinforced by graphene platelets

  • Zhou, Changlin;Zhang, Zhongxian;Zhang, Ji;Fang, Yuan;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.215-226
    • /
    • 2020
  • The aim of this study is to investigate free vibration of functionally graded porous nanocomposite rectangular plates where the internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. The GPL-reinforced plate is modeled using a semi-analytic approach composed of generalized differential quadrature method (GDQM) and series solution adopted to solve the equations of motion. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. New results reveal the importance of porosity coefficient, porosity distribution, graphene platelets (GPLs) distribution, geometrical and boundary conditions on vibration behavior of porous nanocomposite plates. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution.

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

The effect of visco-Pasternak foundation on the free vibration behavior of exponentially graded sandwich plates with various boundary conditions

  • Fatima, Bounouara;Salem Mohammed, Aldosari;Abdelbaki, Chikh;Abdelhakim, Kaci;Abdelmoumen Anis, Bousahla;Fouad, Bourada;Abdelouahed, Tounsi;Kouider Halim, Benrahou;Hind, Albalawi;Abdeldjebbar, Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.367-383
    • /
    • 2023
  • In this investigation, an improved integral trigonometric shear deformation theory is employed to examine the vibrational behavior of the functionally graded (FG) sandwich plates resting on visco-Pasternak foundations. The studied structure is modelled with only four unknowns' variables displacements functions. The simplicity of the developed model being in the reduced number of variables which was made with the help of the use of the indeterminate integral in the formulation. The current kinematic takes into consideration the shear deformation effect and does not require any shear correction factors as used in the first shear deformation theory. The equations of motion are determined from Hamilton's principle with including the effect of the reaction of the visco-Pasternak's foundation. A Galerkin technique is proposed to solve the differentials governing equations, which enables one to obtain the semi-analytical solutions of natural frequencies for various clamped and simply supported FG sandwich plates resting on visco-Pasternak foundations. The validity of proposed model is checked with others solutions found in the literature. Parametric studies are performed to illustrate the impact of various parameters as plate dimension, layer thickness ratio, inhomogeneity index, damping coefficient, vibrational mode and elastic foundation on the vibrational behavior of the FG sandwich plates.

Development of a Moving Body Type Wave Power Generator using Wave Horizontal Motions and Hydraulic Experiment for Electric Power Production (파의 수평운동을 이용한 가동물체형 파력발전장치의 개발과 전력생산에 관한 수리실험)

  • Hwang, Seong Su;Lee, Dong Soo;Yang, Kyong Uk;Byun, Jung Hwan;Park, Il Heum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.73-80
    • /
    • 2016
  • To reduce the mechanical energy loss and to get the high energy efficiency, an apparatus of wave power generation inducing a consistent one way rotating motion from the wave reciprocation motions was developed and the hydraulic experiments for the real electric power production were conducted and the results were discussed. In the experiments for the shape of the buoyant tank, the efficiency of the fixed 9 cm diameter type enduring the wave plate weight was 14.6% and this was the best result for all shapes. But although the free sliding type was expected to represent a high efficiency, the experiments did not show a good result as 8.5% efficiency. Therefore, the shape of buoyant tank was decided as the fixed 9 cm diameter type in the next all tests. In the experiments for the various incident waves, when the water depth was 90 cm, the average efficiencies were measured as 3.9% in the 2nd gear, 4.9% in the 3rd gear, 4.9% in the 4th gear, 12.0% in the 5th gear, 10.0% in the 6th gear, 3.1% in the 7th gear, and 3.0% in the 8th gear. Also, when the water depth was 80 cm, the average efficiency was shown as 15.0% with 5th gear condition. Therefore the high average efficiency as 13.5% was given with 80~90 cm water depth and the 5th gear in the model.

An Inquiry into the Formation and Deformation of the Cretaceous Gyeongsang (Kyongsang) Basin, Southeastern Korea (한반도 동남부 백악기 경상분지의 형성과 변형에 관한 질의)

  • Ryu In-Chang;Choi Seon-Gyu;Wee Soo-Meen
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.129-149
    • /
    • 2006
  • Previously published stratigraphic, sedimentologic, paleontologic, paleomagnetic and geophysical data are reviewed to make an understanding on the tectonic evolution of the Cretaceous Gyeongsang (Kyongsang) basin, southeast Korea. A stratigraphic framework and a tectonic model on the formation and deformation of the Gyeongsang Basin are newly proposed on the basis of integration these data with magmatism and mineralization ages in the basin. A newly proposed stratigraphic framework indicates that strata in the basin can be subdivided into five distinct stratigraphic units that represent pre-rifting, syn-rifting, inversion I, II, and III stages. The Gyeongsang Basin was formed initially as a pre-rifting stage due to north-south extension in the Late Jurassic prior to a syn-riftins stage that resulted from east-west extension during the Early Cretaceous. In the Late Cretaceous, the basin was deformed by three-staged sequential deformation of north-south, northwest-southeast, and east-west compressions. The tectonic history of the basin has been largely controlled by the change of motion of the Izanagi Plate from north to northwest during the Cretaceous. In the early Cretaceous, the Izanagi Plate began to subduct northward beneath the Eurasian Plate and caused the left-lateral strike-slip fault systems in the southern part of the peninsula. The left-lateral wrenching of these fault systems was causally linked to development of pull-apart basins, such as the Gyeongsang Basin in the southeastern part of the peninsula. However, northwestward movement of the Izanagi Plate during the Late Cretaceous probably led to the extensive volcanism as well as sequential deformations in the basin. The stratigraphic and tectonic model, which is newly proposed as a result of this study, may be expected to enhancing the efficiency for exploration and exploitation of useful mineral resources in the basin as well as establishing geologic history in the Cretaceous Gyeongsang Basin. Together with the spatial and temporal correlation of the Cretaceous basins in adjacent areas, this stratigraphic and tectonic model provides a new geologic paradigm to delineate the sophisticated tectonic history of East Asia turing the Cretaceous.

Monitoring the Crustal Movement Before and After the Earthquake By Precise Point Positioning - Focused on 2011 Tohoku Earthquake - (정밀절대측위에 의한 지진 전·후 동아시아 지역 지각변동 모니터링 - 도호쿠 대지진을 중심으로 -)

  • Kim, Min Gyu;Park, Joon Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.477-484
    • /
    • 2012
  • Recently, as earthquake is more frequently taking place around the world due to diastrophism, the importance of diastrophism and disaster detection is becoming more important. In this study, to analyze the interpretation of seismic displacement by the Japanese earthquake in March, 2011, and monitor the diastrophism of plates in Japan and surrounding Eurasia, Pacific, and Philippines before and after the earthquake, the observational data from IGS observatories in Japan and Asian regions were processed by precise point positioning. The displacement was biggest in MIZU, which was the closest to the epicenter, and the earthquake-affected region was in inverse proportion to the distance from the epicenter. The result of calculating the diastrophism speed before and after the earthquake, based on precise point positioning of IGS observatories located in the 4 plates around Japan, showed that the displacement speed changed and different plates showed different results. The comparison with the plate fate model allowed to analyze the change in diastrophism by earthquake, and to understand the characteristics of the displacement of the plates around Japan. Later, a continuous diastrophism monitoring based on GPS is needed for earthquake prediction and diastrophism research, and the data gained by continuous GPS-based monitoring of diastrophism will be fully used as basic data for relevant research and earthquake disaster management.