• Title/Summary/Keyword: plasticity equation

Search Result 236, Processing Time 0.023 seconds

The Meshfree Method Based on the Least-Squares Formulation for Elasto-Plasticity (탄소성 최소 제곱 수식화와 이를 이용한 무요소법)

  • Youn Sung-Kie;Kwon Kie-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.860-875
    • /
    • 2005
  • A new meshfree method for the analysis of elasto-plastic deformations is presented. The method is based on the proposed first-order least-squares formulation, to which the moving least-squares approximation is applied. The least-squares formulation for the classical elasto-plasticity and its extension to an incrementally objective formulation for finite deformations are proposed. In the formulation, the equilibrium equation and flow rule are enforced in least-squares sense, while the hardening law and loading/unloading condition are enforced exactly at each integration point. The closest point projection method for the integration of rate-form constitutive equation is inherently involved in the formulation, and thus the radial-return mapping algorithm is not performed explicitly. Also the penalty schemes for the enforcement of the boundary and frictional contact conditions are devised. The main benefit of the proposed method is that any structure of cells is not used during the whole process of analysis. Through some numerical examples of metal forming processes, the validity and effectiveness of the method are presented.

Verification of load equations for sandwich plates during U-bending (샌드위치판재의 U-bending 공정에서 굽힘하중식의 검증)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.435-438
    • /
    • 2008
  • To verify the load equations, the load-stroke curves of the load equation that were analytically derived for sandwich plates were compared with those of the simulations in the case of the total thickness of 3 mm, the thickness of the face sheets of 0.5 mm, a gap between attachment points of 1.5 mm, and a thickness of the core element of 0.8 mm. The results of the comparisons showed that the overall analytic loads enable the prediction of the numerical loads irrespective of the change of the clearance, the radius of the die, and the radius ratio.

  • PDF

Numerical Simulation of Flow-Induced Birefringence in Injection Molded Disk

  • Lee H. S.;Shyu G. D.;Isayev A. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.41-47
    • /
    • 2003
  • This study is an attempt to understand the birefringence and stress development in an injection molded disk. A computer code was developed to simulate all three stages of the injection molding process - filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. The predicted birefringence was in good agreement with the experimental results.

  • PDF

Fluid flow simulation in carbon nano tube using molecular dynamics (탄소나노튜브 내 유체유동의 분자동역학 모사)

  • 우영석;이우일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.347-354
    • /
    • 2003
  • The dynamics of fluid flow through nanomachines is completely different from that of continuum. In this study, molecular dynamics simulations were performed for the flow of helium, neon, argon inside carbon(graphite) nanotubes of several sizes. The fluid was introduced into the nanotube at a given initial velocity according to given temperature. Diffusion coefficients were evaluated by Green-Kubo equation derived from Einstein relationship. The behaviour of the fluid was strongly dependent on the density of fluid and tube diameter, not on the tube length. It was found that the diffusion Coefficients increased With decreasing the density of molecules and increasing the diameter and temperature.

  • PDF

Development of Wear Analysis Model of Precision Small Rotating Device (정밀소형회전기구의 마모해석모델에 관한 연구)

  • 여은구;조선형;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.355-358
    • /
    • 2003
  • Recently, micro forming process technology have been developed since the size of machine parts become the crucial factor for minimizing of products in general electronic products. Most small machine parts consist of gear and rotation axis and the wear by mechanical contact is known as the primary factor for life reduction of high precision machine part. Lots of studies for mechanical wear and friction have been reported and many researches of MEMS technology have been studied recently. But just few studies for wear of micro or milli sized machine part have teen implemented. In this research, the wear equation is suggested according to the contact shape of axial part in micro or milli sized machine part. And wear analysis model which can predict the magnitude of wear through this suggested equation with numerical analysis program.

  • PDF

Temperature profile analysis for HSS Roll in Hot Strip Mill (열간압연 롤의 온도 해석 결과)

  • 이명재;류재화;이희봉
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.242-251
    • /
    • 1999
  • The temperature distribution over the work roll length was estimated by solving a 2-dimensional heat transfer equation based on the rolling conditions and the thermal boundary conditions. In order to solve the governing equation, a finite volume method was employed. In the rolling conditions, the strip temperature, the contact time between roll and strip, the roll speed, the strip thickness, the rolling force and the rolling and idling time were used as input data. In order to verify the accuracy of temperature estimation, roll surface temperatures were measured in the roll shop. The measured temperatures showed a good correlation with the calculated ones.

  • PDF

Numerical Simulation of Flow-Induced Birefringence in Injection/Compression Molding (사출압축성형에서의 유동에 의한 복굴절 해석)

  • Lee H.-S.;Isayev A.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.65-69
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different processing conditions including the variation of compression stroke and compression speed were carried out to understand their effects on flow-induced birefringence. The simulated results were also compared with those by conventional injection molding and with experimental data from literature.

  • PDF

Effect of Static Softening on Hot Plastic Deformation Behaviour for 304Stainless Steel (304 스테인레스강의 고온소성변형특성에 미치는 정적연화 효과)

  • 조상현;김유승;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.185-188
    • /
    • 1997
  • Static restoration during hot interrupted deformation of 304 stainless steel was studied in the temperature range from 900 to 1100$^{\circ}C$ under various strain rate of 0.05∼ 5/sec and pass strain of 1/4∼3 times peak strain. The static restoration was dependent on the pass strain, deformation temperature and strain rate. Fractional softening(FS) values increased with increasing strain rate, deformation temperature and pass strain. Recystallization kinetics was well explained by the Avrami equation and the time for 50% recrystallization was evaluated using equation of t0.5=2.01${\times}$10-10$\varepsilon$-.156$\varepsilon$ -0.81Dexp(196.66/RT)

  • PDF

A Study on the Prediction of Void Closure in the Cogging Process of a Large Round Bar (대형 단조품 환봉 코깅 공정의 기공 압착 거동 예측에 관한 연구)

  • Song, M.C.;Kwon, I.K.;Park, Y.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.75-78
    • /
    • 2008
  • The predictive equation of void-closure was developed to evaluate void crush ratio with respect to the process variables in the cogging process of a large round bar. The comprehensive finite element analysis with the process variables such as reduction ratio and die width ratio was carried out. The predictive equation of void-closure for cogging process was established on the basis of the regression analysis with the extensive FE analysis results and verified by comparing the predicted results with FEA results with various forging passes.

  • PDF

A NUMERICAL ALGORITHM FOR ELASTO-PLASTIC MATERIAL DEFORMATION

  • HWANG HYUN-CHEOL
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.589-602
    • /
    • 2005
  • We present the numerical algorithm for the model for high-strain rate deformation in hyperelastic-viscoplastic materials based on a fully conservative Eulerian formulation by Plohr and Sharp. We use a hyperelastic equation of state and the modified Steinberg and Lund's rate dependent plasticity model for plasticity. A two-dimensional approximate Riemann solver is constructed in an unsplit manner to resolve the complex wave structure and combined with the second order TVD flux. Numerical results are also presented.