• Title/Summary/Keyword: plastic silt

Search Result 53, Processing Time 0.028 seconds

Prediction for Liquefaction and Lateral Flow on Non-plastic Silt (비소성실트지반의 액상화 및 측방유동량 예측)

  • Yang, Taeseon;Song, Byungwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.65-70
    • /
    • 2011
  • It is well known all much information for evaluation on possibility of liquefaction and lateral flow for sand over the world. Recently, it is started to be known that liquefaction happens on non-plastic silt, too. But cyclic and post-cyclic characteristics for non-plastic silt is a few familiar to the world. Specially, it is not aware of the estimating method for lateral flow on non-plastic silt. The main purpose in this paper is to propose the evaluation for liquefaction and lateral flow on non-plastic silt. The method used in this research is that possibility for liquefaction on non-plastic silt was evaluated with cyclic direct simple shear test, and then residental strength was estimated with static shear test. Through the test results liquefaction on non-plastic silt is well not happened but strength decreases rapidly with increasing shear stress. With the proposed method it can be evaluated possibility of liquefaction and propose lateral flow.

The Characteristic for Undrainded Shear Behavior of in Low-Plastic Silt and its Prediction (저소성 실트의 비배수 전단거동 특성과 예측)

  • Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.61-70
    • /
    • 2008
  • In this study, undrained triaxial (CU) tests were performed on low-plastic silt of Nakdong River in order to investigate the undrained shear behavior of low-plastic silt. In experimental results, the deviator stress showed the hardening behavior after reaching its yield stress like the tendency of common sand, and the pore water pressure was gradually decreased to critical state after the maximum value. In the effective stress paths, regardless of consolidation stress or overconsolidation ratios, both a critical state line (CSL) and a phase transformation line (PTL) exist in the effective stress path that is similar to the case of sand. The behavior of low-plastic silt was predicted by the Modified Cam-Clay (MCC) model, the Jordan and the Elman-jordan model that is artificial neural network model. According to predicted results, the overall undrained shear behavior of low-plastic silt could not be predicted with the MCC model, but the Jordan and Elman-Jordan model showed well-matched experiment results.

  • PDF

Effects of silt contents on the static and dynamic properties of sand-silt mixtures

  • Hsiao, Darn H.;Phan, Vu T.A.
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.297-316
    • /
    • 2014
  • This paper presents a detailed study focused on investigating the effects of silt content on the static and dynamic properties of sand-silt mixtures. Specimens with a low-plastic silt content of 0, 15, 30 and 50% by weight were tested in static triaxial, cyclic triaxial, and resonant columns in addition to consolidation tests to determine such parameters as compression index, internal friction angle, cohesion, cyclic stress ratio, maximum shear modulus, normalized shear modulus and damping ratio. The test procedures were performed on specimens of three cases: constant void ratio index, e = 0.582; same peak deviator stress of 290 kPa; and constant relative density, $D_r$ = 30%. The test results obtained for both the constant-void-ratio-index and constant-relative-density specimens showed that as silt content increased, the internal friction angle, cyclic stress ratio and maximum shear modulus decreased, but cohesion increased. In testing of the same deviator stress specimens, both cohesion and internal friction angle were insignificantly altered with the increase in silt content. In addition, as silt content increased, the maximum shear modulus increased. The cyclic stress ratio first decreased as silt content increased to reach the threshold silt content and increased thereafter with further increases in silt content. Furthermore, the damping ratio was investigated based on different silt contents in three types of specimens.

Nonlinear Compression Characteristics of Highly Plastic Clays and Silts (고소성점토 및 실트의 비선형 압밀특성)

  • Han, Dae-Hee;Im, Jong-Chul;Kwon, Jung-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1081-1089
    • /
    • 2008
  • Highly plastic clays in their normally consolidated state are not linear but are concave upwards. Thus their compression index deceases with the increase in consolidation pressure. Likeness the e - log ${\sigma}\;_{\upsilon}\;'$ curves of the silts are not linear but are convex upwards. In this paper, conducted consolidation test with four undisturbed field soil and found that their e - log ${\sigma}\;_{\upsilon}\;'$ plots are not linear. And analyzed difference of settlement between computed value with compression index($C_c$) and computed value with improved compression index($\mathbb{C}$).

  • PDF

Cyclic liquefaction and pore pressure response of sand-silt mixtures

  • Dash, H.K.;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.83-108
    • /
    • 2011
  • The effect of non-plastic fines (silt) on liquefaction and pore pressure generation characteristics of saturated sands was studied through undrained stress controlled cyclic triaxial tests using cylindrical specimens of size 50 mm diameter and height 100 mm at different cyclic stress ratios and at a frequency of 0.1 Hz. The tests were carried out in the laboratory adopting various measures of sample density through various approaches namely gross void ratio approach, relative density approach, sand skeleton void ratio approach, and interfine void ratio approach. The limiting silt content and the relative density of a specimen were found to influence the undrained cyclic response of sand-silt mixtures to a great extent. Undrained cyclic response was observed to be independent of silt content at very high relative densities. However, the presence of fines significantly influenced this response of loose to medium dense specimens. Combined analyses of cyclic resistance have been done using the entire data collected from all the approaches.

Nonlinear Compression Characteristics of Highly Plastic Clays and Silts of Korea South Coast (한국 남부 해안 고소성 점토 및 실트의 비선형 압축특성 연구)

  • Hong, Seok-Woo;Im, Jong-Chul
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.181-187
    • /
    • 2012
  • Highly plastic clays in their normally consolidated states are not always linear but are concave downwards. Thus their compression index deceases with the increase of consolidation pressure. The $e-{\log}{\sigma}_{\upsilon}{\prime}$ curves of plastic or non-plastic silty clays are not linear but are convex upwards. In this paper, consolidation tests were conducted with several undisturbed field soils of Korea south coast and their $e-{\log}{\sigma}_{\upsilon}{\prime}$ plots are not always linear. In case of using Butterfield's method(liquid limit 50~100%), ${\ln}{\upsilon}-{\ln}{\sigma}_{\upsilon}{\prime}$ plots are linear. But some undisturbed samples which have void ratio over 2.24, liquid limit over 100% and plasticity index over 60% are not linear. In results of consolidation tests with remolded samples which contain silt(fly ash) contents of 90% has compression index increasing with the increase in consolidation pressure.

Stiffness Comparison of Non-plastic Silt due to Bender Element and Direct Simple Shear Test (벤더엘레먼트와 단순전단시험에 의한 비소성실트의 강성 비교)

  • Song, Byungwoong;Yasuhara, Kazuya;Sakamoto, Wataru;Lee, Jeawoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 2007
  • Recent investigations into earthquake-induced damage have reported that liquefaction may take place on not only sands but also fine-contained soils or non-plastic silts. Although not a few study has been performed to understand the liquefaction of sands, relatively little effort has been devoted to improving our understanding of the liquefaction characteristics for non-plastic soils. Given that liquefaction strength is largely associated to shear wave velocity, bender element test as well as direct simple shear test is employed to examine the stiffness of non-plastic silt more precisely. Through the soil tests, the stiffness of non-plastic silts from the bender element tests is identified as slightly greater than that from the direct simple shear test. Further, the stiffness of non-plastic silts appears to be smaller than that of clay.

  • PDF

Prediction for degradation of strength and stiffness of fine grained soil using Direct Simple Shear Test (DSST) (직접단순전단시험을 통한 세립토의 강도와 강성저하 예측)

  • Song, Byung-Woong;Yasuhara, kazuya;Kim, Jeong-Ho;Choi, In-Gul;Yang, Tae-Seon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.529-536
    • /
    • 2005
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests, Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from post-cyclic DSS tests were interpreted by a modified method as adopted for post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils was emphasised. Findings obtained from the present study are: (i) the higher the plasticity index of fine-grained soils is, the less not stiffness ratio but strength ratio decreases with increment of a normalised excess pore water pressure; and (ii) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

  • PDF

Influence of gradation on shear strength and volume change behavior of silty sands

  • Monkul, Mehmet Murat
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.401-417
    • /
    • 2013
  • The results of an experimental program regarding the effects of gradation on shear strength and volume change behavior of silty sands are presented. Consolidated drained direct shear tests were performed on two clean base sands and twelve silty sands obtained by mixing those base sands with two different non-plastic silts at various fines contents (${\leq}$ 25%). Drained shear strengths were observed to be not significantly influenced by either base sand gradation or silt gradation or fines content for the studied range. Increasing fines content has increased the volumetric contraction of specimens at similar void ratio. However, the amount of increase in volumetric contraction of silty sands were found to be affected by silt gradation when other influencing factors such as fines content, base sand gradation and mineralogy were kept the same. Moreover, the amount of increase in volumetric contraction of silty sands were also found to be affected by base sand gradation when other influencing factors such as fines content, silt gradation and mineralogy were kept the same.

Shear Behaviour of Sand-silt Mixture under Low and High Confining Pressures (모래-실트 혼합토의 구속압력에 따른 전단특성 파악)

  • Kim, Uk-Gie;Zhuang, Li
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.27-38
    • /
    • 2015
  • Triaxial tests on sand-silt mixture specimens under low and high confining pressures were performed to understand their shear behaviors. The fines content in the mixture is lower than the threshold value. A series of tests under different conditions including fines contents (0%, 9.8%, 14.7%, 19.6%), density of specimen (controlled by different compaction energies of $E_c=22kJ/m^3$, $E_c=504kJ/m^3$), confining pressure (100 kPa, 1 MPa, 3 MPa, 5 MPa) were performed to investigate influences of these factors. Based on the test results, the threshold fines content, where the dominant structure of mixture changes from sand-matrix to fines-matrix, decreases with the increase of confining pressure. Under very high confining pressures, as a result of sand particle crushing, the behavior of the dense specimen is similar to that of the loose specimen which shows hardening, compression behavior, and shear strength increases with increase of fines content. In conclusion, silt is granular material like sand, and its influence on shear behavior of sand-silt mixture is very different from that of plastic fines on sand-fines mixture.