DOI QR코드

DOI QR Code

Shear Behaviour of Sand-silt Mixture under Low and High Confining Pressures

모래-실트 혼합토의 구속압력에 따른 전단특성 파악

  • Kim, Uk-Gie (Geotechnical Engrg. Research Division, KICT) ;
  • Zhuang, Li (Geotechnical Engrg. Research Division, KICT)
  • 김욱기 (한국건설기술연구원, 지반연구소) ;
  • 장리 (한국건설기술연구원, 지반연구소)
  • Received : 2014.12.24
  • Accepted : 2015.02.02
  • Published : 2015.03.31

Abstract

Triaxial tests on sand-silt mixture specimens under low and high confining pressures were performed to understand their shear behaviors. The fines content in the mixture is lower than the threshold value. A series of tests under different conditions including fines contents (0%, 9.8%, 14.7%, 19.6%), density of specimen (controlled by different compaction energies of $E_c=22kJ/m^3$, $E_c=504kJ/m^3$), confining pressure (100 kPa, 1 MPa, 3 MPa, 5 MPa) were performed to investigate influences of these factors. Based on the test results, the threshold fines content, where the dominant structure of mixture changes from sand-matrix to fines-matrix, decreases with the increase of confining pressure. Under very high confining pressures, as a result of sand particle crushing, the behavior of the dense specimen is similar to that of the loose specimen which shows hardening, compression behavior, and shear strength increases with increase of fines content. In conclusion, silt is granular material like sand, and its influence on shear behavior of sand-silt mixture is very different from that of plastic fines on sand-fines mixture.

본 논문에서는 모래-실트 혼합토의 압력수준별 전단특성을 파악하기 위해 모래가 골격구조를이루는 세립분 함유율의 시료를 이용하여 저압 및 고압 삼축압축시험을 수행했다. 시험조건으로 세립분 함유율(0%, 9.8%, 14.7%, 19.6%), 공시체의 밀도(다짐에너지 $22kJ/m^3$, $504kJ/m^3$), 구속압(100kPa, 1MPa, 3MPa, 5MPa) 등을 변화시켜가며 각 조건에서 비소성 실트가 혼합토의 전단강도와 거동에 미치는 영향을 조사했다. 시험 결과, 모래의 골격구조에서 세립분 구조로 전환되는 전환 세립분 함유율은 구속압이 높을수록 감소하는 경향을 나타낸다. 구속압력이 높은 고압영역에서의 전단 특성은 구속압이 높을수록 조립자의 파쇄로 인하여 조밀한 모래에서도 느슨한 모래와 같은 경화, 수축거동을 나타내고 세립분 함유율이 증가함에 따라 전단강도 또한 증가하였다. 이러한, 비소성 실트가 혼합토의 전단특성에 미치는 영향은 실트도 모래와 같은 입상체이므로 소성점토 혼합토와는 상이한 거동을 나타냄을 알았다.

Keywords

References

  1. Adachi, M., Yasuhara, K., and Shimabukuro, A. (2000), "Influences of Sample Preparation Method on the Behavior of Non-plastic silts in Undrained Monotonic and Cyclic Triaxial Tests", Tsuchi-to-Kiso, Vol.48, No.11, pp.24-27 (in japanese).
  2. Bahadori, H., Ghalandarzadeh, A., and Towhata, I. (2008), "Effect of Non Plastic Silt on the Anisotropic Behaviour of Sand", Soils and Foundations, Vol.48, No.4, pp.531-545. https://doi.org/10.3208/sandf.48.531
  3. Chang, W. J. and Hong, M. L. (2008), "Effect of Clay Content on Liquefaction Characteristics of Gap-Graded Clayey Snads", Soils and Foundations, Vol.48, No.1, pp.101-114. https://doi.org/10.3208/sandf.48.101
  4. Cubrinovski, M. and Ishihara, K. (2002), "Maximum and Minimum Void ratio Characteristics of Sands", Soils and Foundations, Vol.42, No.6, pp.65-78. https://doi.org/10.3208/sandf.42.6_65
  5. Georgiannou, V. N., Burland, J. B., and Hight, D. W. (1990), "The Undrained Behaviour of Clayey Sands in Triaxial Compression and Extension", Geotechnique, Vol.40, No.3, pp.431-449. https://doi.org/10.1680/geot.1990.40.3.431
  6. Hyodo, M., Kim, U., Nakata, Y., and Yoshimoto, N. (2010), "Effect of Fines on Undrained Shear Characteristics of Sand-Clay Mixtures", Journal of Japan Society of Civil Engineers (JSCE), Vol.66, No.1, pp.215-225 (in japanese).
  7. Japanese Geotechnical Society Standard (2008), "Test Method for Minimum and Maximum Densities of Sands", JGS 0161.
  8. Japanese Geotechnical Society Standard (2000), "Method for Consolidated-Drained Triaxial Compression test on Soils", JGS 5024.
  9. Kenny, T. C. (1977), "Residual Strengths of Mineral Mixture", Proceedings of the 9th International Conference Soil Mechanics, Tokyo 1, pp.155-160.
  10. Kim, U., Kim, D., Lee, J., and Kim, J. (2012), "Evaluation of Cyclic Shear Strength Characteristics of Sands Containing Fines", Journal of the Korean Geotechnical Society, Vol.28, No.7, pp.31-40 (in korean). https://doi.org/10.7843/kgs.2012.28.7.31
  11. Martins, F. B., Bressani, L. A., Coop, M. R., and Bica, A. V. D. (2001), "Some Aspects of the Compressibility Behaviour of a Clayey Sand", Canadian Geotechnical Journal, Vol.38, pp.1177-1186. https://doi.org/10.1139/t01-048
  12. Mitchell, J. K. (1993), "Fundamentals of Soil Behaviour", 2nd edn, John Wiley Interscience NewYork, pp.172-189.
  13. Naeini, S. A. and Baziar, M. H. (2004), "Effect of Fines Content on Steady-State Strength of Mixed and Layered Samples of a Sand", Soil Dynamic Sand Earthquake Engineering, Vol.24, pp.181-187. https://doi.org/10.1016/j.soildyn.2003.11.003
  14. Nakase, A. and Kamei, T. (1983), "Undrained Shear Strength Anisotropy of Normally Consolidated Cohesive Soils", Soils and Foundations, Vol.23, No.1, pp.91-101. https://doi.org/10.3208/sandf1972.23.91
  15. Nakase, A. and Kamei, T. (1988), "Undrained Shear Strength of Remoulded Marine Clay", Soils and Foundations, Vol.28, No.1, pp.29-40. https://doi.org/10.3208/sandf1972.28.29
  16. Nocilla, A., Coop, M. R., and Colleselli, F. (2006), "The Mechanics of an Italian Silt: An Example of 'Transitional' behaviour", Geotechnique, Vol.56, No.4, pp.261-271. https://doi.org/10.1680/geot.2006.56.4.261
  17. Ochiai, H. and Ohmine, K. (1993), "Compression and Strength Properties of Sand-Clay Mixed Soils", Tsuchi-to-Kiso, Vol.41, No.7, pp.11-16.
  18. Pitman, T. D., Robertson, P. K., and Sego, D. C. (1994), "Influence of Fines on the Collapse Sands", J. Can. Geotech., Vol.31, pp.728-739. https://doi.org/10.1139/t94-084
  19. Thevanayagam, S. and Mohan, S. (2000), "Intergranular State Variables and Stress-Strain Behaviour of Silty Sands", Geotechnique, Vol.50, No.1, pp.1-23. https://doi.org/10.1680/geot.2000.50.1.1
  20. Thevanayagam, S., Shenthan, T., Mohan, S., and Liang, J. (2002), "Undrained Fragility of Clean Sands, Silty Sands, and Sandy Silty", Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.10, pp.849-859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)
  21. Tsuchida, T. (1993), "Consolidation, Compression and Permeability Properties of Intermediate Soil and Mixture Soil", Tsuchi-to-Kiso, Vol.41, No.7, pp.5-10 (in japanese).
  22. Yamamuro, J. A. and Covert, K. M. (2001), "Monotonic and Cyclic Liquefaction of Very Loose Sands with High silt Content", Journal of Geotechncial and Geoenvironmental Engineering, ASCE, Vol.127, No.4, pp.314-324. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(314)