• Title/Summary/Keyword: plastic injection mold manufacturing

Search Result 99, Processing Time 0.02 seconds

Ultra-precision High Numerical Aperture Plastic Objective Lens for Blu-ray Disc Pick-up (블루레이 디스크 픽업용 초정밀 고개구율 플라스틱 대물렌즈)

  • Kim, Boo-Tae;Hyun, Dong-Hoon;Yoo, Kyung-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.811-816
    • /
    • 2011
  • We develop a plastic object lens for blu-ray disc playing pick-up module as morethan 0.85 numerical aperture in this research. We design plastic object lens for blu-ray disc playing pick-up module's each factor's in balanced and made our designed lens by injection molding. Furthermore, by correction designing in mold-core, we optimization our lens efficiency as world grade; wave front aberration $0.028{\lambda}$. RMS, light axis differential 0.3967arcmin. We can manufacture localized blu-ray disc's pick-up lens's component and by this fact we obtain international competitiveness. The result of this research will be very helpful to develop a single objective lens for 3 different wavelength of laser diodes in playing and recording pick-up module.

Development of double injection mold for fuel-tube holder (자동차 연료튜브 홀더용 이중사출 금형·성형기술)

  • Kim, Gun-Hee;Yoon, Gil-Sang;Heo, Young-Moo;Jung, Woo-Chul;Shin, Kwang-Ho
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Double injection molding process is very efficient molding-method for molding the products which is consist of multi-materials. Fuel-tube holder which is necessary for automobil power train and circulation systems is composed of plastic and rubber materials to minimize the vibration and pulsation noises. In existing process, fuel-tube holder was made by the insert molding process or assembly process after molding. If fuel-tube holder is manufactured by double injection molding process, it may be realize to improve the product quality, efficiency of molding-process and retrenchment of manufacturing cost. In this study, for manufacturing fuel-tube holder by double injection molding process, the analysis of joining characteristics between PA6(polyamide 6) and TPE(thermoplastic elastomer) was executed and the double injectin mold for molding fuel-tube holder with core toggle mechanism was fabricated. Finally, fuel-tube holder was molding using fabricated double injection mold.

  • PDF

The Application of 3D Injection Molding Simulation in Gate Location Selection for Automotive Console (자동차용 콘솔 게이트 위치 선정을 위한 3차원 사출성형 시뮬레이션 활용)

  • Choi, Young-Geun
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.51-58
    • /
    • 2014
  • Injection molding simulation provided optimized design results by analyzing quality problems while the product is in assembly or in the process of manufacturing with make automobile plastics. Frequent change of design, change of injection molding, repetition of test injection which was held in the old way can now be stopped. And quality upgrade is expected instead. This report deals with the effect which the position of injection molding automobile console gate and number has on product quality including pressure at end of fill, bulk temperature at end of fill, shear stress of end of fill, residual stress at post filling end, product weld lines and warpage results. Simpoe-Mold simulates the complete manufacturing process of plastic injected parts, from filling to warpage. Simpoe-Mold users, whether they are product designers, mold makers or part manufacturers, can identify early into the design stage potential manufacturing problems, study alternative solutions and directly assess the impact of such part modification, whatever the complexity and geometry of such parts, shell part as plain solid parts.

QUALITY STABILIZATION OF BALL SEAT IN AUTOMOTIVE SUSPENSION PARTS

  • KANG T.-H.;KIM I.-K.;KIM Y.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.507-511
    • /
    • 2005
  • Recently, many solution have been suggested to development of plastic products. Among many manufacturing technologies for plastic parts, the injection molding process is very attractive because of its low production cost and short cycle time. In this paper, the plastic ball seat of a ball joint, one of the essential components for automotive suspension or steering system, was studied to enhance its mechanical performance and durability by using PA66 that is reinforced polymeric plastic resin. But ball seat has some trouble in manufacture process. And strength of molded part is not enough to use. For the quality stabilization and reliability of injection molded parts, we designed the mold cavities through analytical simulation software and tested the mechanical performance for the injection molded ball-seat parts. After modification, tensile strength increases by about $13.5\%$. Strength and quality stabilization is improved.

Design and Manufacturing of Narrow-pitched IC Sockets (초소형 IC 소켓 설계 및 제조 기술)

  • Yoon, Seon-Jhin;Kim, Jong-Mi;Kwon, Oh-Keun
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.9-14
    • /
    • 2017
  • The design and manufacturing tehcnology of IC sockets beyond 0.3mm pitch were presented. We compared the developed IC socket with the conventional one especially on the core metal-insulation part. Advanced machining techniques were employed to provide high precision. Our wire electrodischarge machining and high speed machining centers were able to maintain the micro-scale precision. We performed an injection molding analysis using a commercial analysis tool to predict the performance of the developed IC socket. We found that the solidification of the plastic resin and the high level of the clamping force are responsible for the defects such as incomplete filling and short shot. From these results, we modified the IC socket and successfully remove the defects. We were also able to find out that the new design socket needs less maintenance cost.

A Study on the Improvement of the Shape Accuracy of Plastic Lens by Compensation Program (보정 프로그램을 이용한 Plastic 렌즈 Core의 보정에 관한 연구)

  • Woo, Sun-Hee;Lee, Dong-Joo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.112-118
    • /
    • 2008
  • In order to meet the optical performance in the process of the micro lens manufacturing with plastics, it is important to embody accuracy in shape and surface roughness to the intended design. Since it is difficult to machine exactly the mold core of lens fit to the designed shape, in this paper, a simple program using MATLAB is developed for shape correction of the mold core after first machining it. This program evaluates correction parameters(aspheric coefficients and curvature) and generates aspheric NC data for compensating the core surface in prior machining process. The program provides the way to manufacture plastic injection molding lens with aspheric shape of high precision, and is expected to be effective for correction and to shorten the processing time.

Fabrication and Testing of Injection Mold for Cosmetic Container with Conformal Cooling Channels Using Vacuum Diffusion Bonding (진공확산접합을 이용한 형상적응형 냉각채널을 가진 화장품 용기용 사출금형의 제작 및 시험사출)

  • Yu, Man-Jun;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.92-98
    • /
    • 2020
  • In this study, an injection mold with conformal cooling channels was designed and manufactured for use in the production of a thick plastic cosmetic container that required high gloss surfaces. A cooling analysis verified the design of the conformal cooling channel for the cosmetic container, and also showed that the cooling efficiency was superior to that of the straight cooling channel. Slide cores designed with the conformal cooling channel were manufactured using the Layers Parting method and vacuum diffusion bonding. Subsequent test injection and quality inspection showed no problem in the appearance and dimensional accuracy of the produced product. The cycle time for product production was about 110 seconds, sufficient for mass production.

A Study of the Effects of Injection Conditions on Aberration Change of Aspherical Plastic Pick-up Lens (플라스틱 비구면 픽업 렌즈의 사출조건에 대한 수차변화 연구)

  • 현동훈;이승준;이승수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.70-75
    • /
    • 2004
  • In this study, the pattern of lens aberration was studied at different injection molding conditions such as injection speed, holding pressure, holding pressure time, mold temperature and cylinder temperature and, then, the results were analyzed with a laser interferometer. It was demonstrated that optimal condition of lens aberration could be achieved by adjustment of injection molding conditions.

  • PDF

Manufacturing of Rapid Tooling for Thick-Wall Plastic Lens Mold with Conformal Cooling Channel (균일 냉각을 고려한 Thick-Wall 형상의 플라스틱 렌즈 쾌속 금형 제작)

  • Park, Hyung-Pil;Cha, Baeg-soon;Lee, Sang-Yong;Choi, Jae-Hyuk;Lee, Byung-Ok
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • In the optical application demand for high quality lens is increasing. Plastics lenses are demanded more than glass lenses for large size lenses as well as micro-size lenses. It is difficult to apply typical straight cooling channels of injection mold to lens molding due to its non-uniform temperature distribution. In this study, we manufactured molds for plastic lenses with the conventional cooling channels and conformal cooling channels produced by the DMLS process. We evaluated cooling performance for the 2 molds by injection molding experiment. Also, uniformity of the temperature distribution was tested by infrared camera and temperature monitoring. We confirmed that the cooling performance and temperature uniformity with the conformal cooling channels is much improved from the ones with the conventional. The cooling time with the conformal cooling channels was reduced 30% compared with the conventional cooling channels.

  • PDF

A Study on Laser Surface Treatment Characteristics of High Carbon Steel(HP4MA) for Injection Mold (사출금형용 고탄소강(HP4MA)의 레이저열처리 특성에 관한 연구)

  • Hwang, Hyun-Tae;Choi, Hung-Won;Kim, Jong-Do
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.646-652
    • /
    • 2011
  • Recently, lots of automobile part manufacturers try to increase glass fiber content of their plastic parts to improve strength and impact-resistance. For this reason, injection mold requires high hardness and wear-resistant. Laser surface treatment is used to improve characteristics of wear and to enhance the fatigue resistance for injection mold. In this paper, high carbon steel (HP4MA) for injection mold material was heat-treated to harden surface by using high power diode laser (HPDL). To find the process parameters for laser surface treatment of HP4MA, many experiments are carried out as changing the parameters of surface temperature and travel speed of laser. From the results of the experiments, it has been shown that the maximum average hardness is approximately 711~739 Hv when the temperature and the travel of laser are $1,050^{\circ}C$ and 2 mm/sec.