• Title/Summary/Keyword: plastic films

Search Result 298, Processing Time 0.036 seconds

Development of Tilt angle measurement system of plastic thin-film using Position Sensitive Device (PSD를 이용한 플라스틱 박막 필름의 경사 각도 측정 시스템 개발)

  • Kim, Gi-Seung;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.134-138
    • /
    • 2021
  • Various types of precision plastic thin films are used widely in high-performance displays, such as smartphones. For plastic thin-films manufactured by the Roll-to-Roll process, the film thickness must be measured and managed while moving. In the Roll-to-Roll process, wrinkles are generated when tension is applied to the film, which causes an inclination on the optical axis of the thickness gauge, resulting in a loss of accuracy. Therefore, this study attempted to develop an optical interference tomography measurement system. In this study, the tilt angle of the film was measured to correct the measurement value error in the thickness gauge caused by the tilt of the film. The system was constructed so that the laser was irradiated on the tilted film, and the laser reflected from the film was formed on the PSD. The relationship between the tilt angle of the film and the output value of the PSD was obtained experimentally. Using this, a device to measure the tilt angle of the film was constructed, and angle measurements were taken at a speed of 250,000Hz.

A simple device to measure the relative rate of heat loss through plastic coverings from greenhouse (그린하우스의 프라스틱 피복재를 통한 상대적 열손실 속도를 측정하는 간단한 장치)

  • Jung, Jin;Park, Byung-Bin
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.2
    • /
    • pp.142-147
    • /
    • 1989
  • In this report, we set up a simple device which enabled us to obtain data useful to estimate the relative capacity of thermal energy retention of greenhouse built with various plastic coverings. A box($20cm{\times}20cm{\times}30cm$) framed with flexiglass at the edges and covered with thin plastic films was made, in which were placed a thermostat-controlled nichrom wire heater and a thermal probe made of thermister to monitor temperature changes. A wheaston-bridge type transducer and a chart recorder were used to record the changes of temperature inside the box The data obtained by using the device showed that the relative rate of heat toss through plastic films with identical thickness decreased in the order of PE film>EVA film>PVC film and that IR additives such as fine silica gel improved the insulating power of plastic films. This observations are in well accord with general information, demostrating the feasibility of the device in usefulness for the purpose of screening of various commercial plastic coverings.

  • PDF

Characterization of Antimicrobial Polymeric Films for Food Packaging Applications (식품 포장용 항균 기능성 고분자 필름의 특성 및 평가)

  • 이주원;홍석인;손석민;장윤희
    • Food Science and Preservation
    • /
    • v.10 no.4
    • /
    • pp.574-583
    • /
    • 2003
  • There have been a lot of research efforts on development of active food packaging structures and materials in the form of plastic films and containers, along with investigating novel polymers and bioactive compounds for packaging purpose, in order to improve storage stability and safety of foods during distribution and sale. Recently, great interests focus on antimicrobial package films, as an active packaging system, made from synthetic plastic polymer% and natural biopolymers containing various antimicrobial substances for food packaging applications. In this active system, substances are slowly released onto the food surface. However, antimicrobial activity as well as physical properties of the films can be significantly influenced by several factors such as polymer matrix, antimicrobial compounds, and interactions between polymers and compounds. Thus, this study reviews present status of antimicrobial food packaging films in overall performance aspects including types of polymers and active substances, test for antimicrobial activity, and changes in mechanical and antimicrobial properties by preparation method.

A Study on the Behaviors of Inorganic Fillers in Recycling of the Waste Agricultural Plastic Films (I) - Effects on the Addition of Calcium Carbonate and Calpet - (무기(無機) 충진재(充鎭材) 첨가(添加)에 따른 재생(再生) 폐(廢)비닐의 특성(特性) 분석(分析) (I) - 중탄과 칼펫의 첨가(添加)에 따른 영향(影響) -)

  • Ahn, Tae-Kwang;Son, Sang-Jin;Kim, Hea-Tae;Kim, Myoung-Ho;Zhou, Gong-Ming;Chen, De-Zhen
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.10-20
    • /
    • 2008
  • In order to study the behaviors of inorganic fillers in recycling of the waste agricultural plastic films, the washed PE fluffs from Shihwa and Jungeup Plant belonging to ENVICO were used respectively. First of all, the test pellets were manufactured by adding of inorganic fillers suchlike calcium carbonate and calpet by certain portions to PE fluffs and then the tested sheets were formed. The mechanical and thermal properties of the samples were measured and compared with others. The items measured were tensile, flexural, Izod impact, HDT, MFT, and so on. Morphologies were also investigated for various samples using the SEM. Finally, optimum ratios between recycled PE and inorganic additives were found out for the best products in physical condition as well as in economic point of view.

Low Temperature Deposition of ITO Thin Films for Flat Panel Displays by ICP Assisted DC Magnetron Sputtering (유도결합 플라즈마(ICP) Sputtering에 의한 평판 디스플레이(FPD)용 ITO 박막의 저온 증착)

  • 구범모;정승재;한영훈;이정중;주정훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.146-151
    • /
    • 2004
  • Indium tin oxide (ITO) is widely used to make a transparent conducting film for various display devices and opto-electric devices. In this study, ITO films on glass substrate were fabricated by inductively coupled plasma (ICP) assisted dc magnetron sputtering. A two-turn rf coil was inserted in the process chamber between the substrate and magnetron for the generation of ICP. The substrates were not heated intentionally. Subsequent post-annealing treatment for as-deposited ITO films was not performed. Low-temperature deposition technique is required for ITO films to be used with heat sensitive plastic substrates, such as the polycarbonate and acrylic substrates used in LCD devices. The surface roughness of the ITO films is also an important feature in the application of OLEDs along with the use of a low temperature deposition technique. In order to obtain optimum ITO thin film properties at low temperature, the depositions were carried out at different condition in changing of Ar and $O_2$ gas mixtures, ICP power. The electrical, optical and structural properties of the deposited films were characterized by four-point probe, UV/VIS spectrophotometer, atomic force microscopy(AFM) and x-ray diffraction (XRD). The electrical resistivity of the films was -l0$^{-4}$ $\Omega$cm and the optical transmittance in the visible range was >85%. The surface roughness ( $R_{rms}$) was -20$\AA$.>.

Silicon Thin-film Transistors on Flexible Foil Substrates

  • Wagner, Sigurd;Gleskova, Helena
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.263-267
    • /
    • 2002
  • We are standing at the beginning of the industrialization of flexible thin-film transistor backplanes. An important group of candidates is based on silicon thin films made on metal or plastic foils. The main features of amorphous, nanocrystalline and microcrystalline silicon films for TFTs are summarized, and their compatibility with foil substrate materials is discussed.

  • PDF

A Study on the Low Temperature Preparation and the Practical Application of Ferrite Films by New Techniques. (신 기술에 의한 페라이트 막의 저온 제작과 그 응용에 관한 연구)

  • 최동진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.658-663
    • /
    • 1998
  • Ferrite plating enables were grown by ferrite by plating method in solution at low temperature(<10$0^{\circ}C$). This faciltates the fabrication of new ferrite thin film devices using non- heat-resistant materials(plastic, GaAs ect) as substrates. Combining the ferrite plating with sonochemistry, application of power ultrasonic waves to stimulate chemical reactions, the crystallinity and qualities of films were improved. Modifying the reactions cell and plating conditions further improved the film quality.

  • PDF