• Title/Summary/Keyword: plastic display substrate

Search Result 127, Processing Time 0.036 seconds

Development of a Strain Gauge for Sensing Large Strain (대 변형 감지용 스트레인게이지 개발)

  • Lee, Young Tae;Cho, Seung Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.33-36
    • /
    • 2014
  • In this paper, a carbon strain gauge for large strain was developed. The carbon strain gauge was fabricated by forming PCB and antenna pattern using Cu/Ni/Au film and carbon resistor pattern using screen printing process on plastic film substrate. It was possible to develop low-cost disposable strain gauge since the carbon paste was cheap and the fabrication process was simple. The wireless communication type carbon strain gauge was fabricated by integrating signal processing circuit, antenna and power all together on the same substrate as a strain gauge. The wireless communication type carbon strain gauge has a merit of being available immediately at the spot without any particular system.

Statistical Modeling of the Pretilt Angle Control in Nematic Liquid Crystal using In-situ Photoalignment Method on Plastic Substrate

  • Kang, Hee-Jin;Lee, Jung-Hwan;Yun, Il-Gu;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.145-148
    • /
    • 2006
  • In this study, the response surface modeling of the pretilt angle control using in-situ photoalignment method with oblique UV exposure .on plastic substrate is investigated. The pretilt angle is the main factor to determine the alignment of the liquid crystal display. The response surface model is used to analyze the variation of the pretilt angle on the various process conditions. Heating temperature and UV exposure time are considered as input factors. The liquid crystal (LC) pretilt angle increased with increasing heating temperature and UV exposure time. The analysis of variance is used to analyze the statistical significance and the effect plots are also investigated to examine the relationship between the process parameters and the response.

3.5-Inch QCIF AMOLED Panels with Ultra-low-Temperature Polycrystalline Silicon Thin Film Transistor on Plastic Substrate

  • Kim, Yong-Hae;Chung, Choong-Heui;Moon, Jae-Hyun;Lee, Su-Jae;Kim, Gi-Heon;Song, Yoon-Ho
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.308-314
    • /
    • 2008
  • In this paper, we describe the fabrication of 3.5-inch QCIF active matrix organic light emitting display (AMOLED) panels driven by thin film transistors, which are produced by an ultra-low-temperature polycrystalline silicon process on plastic substrates. The over all processing scheme and technical details are discussed from the viewpoint of mechanical stability and display performance. New ideas, such as a new triple-layered metal gate structure to lower leakage current and organic layers for electrical passivation and stress reduction are highlighted. The operation of a 3.5-inch QCIF AMOLED is also demonstrated.

  • PDF

Excimer laser crystallization of sputtered a-Si films on plastic substrates

  • Cho, Hans-S;Jung, Ji-Sim;Kim, Do-Young;Park, Young-Soo;Park, Kyung-Bae;Kwon, Jang-Yeon;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.962-965
    • /
    • 2004
  • In this work, thin films of amorphous silicon (a-Si) were formed on plastic substrates by sputtering deposition and crystallized using excimer laser irradiation. As the entire process is conducted at room temperature, and the laser irradiation-induced heating is confined to the thin film, the plastic substrate is not subjected to thermal stresses. The microstructure resulting from the laser irradiation was dependent on the laser irradiation energy density and the composition of the underlying buffer layers. It was found that a layer of AlN deposited as a buffer between the plastic and the a-Si film increased the endurance of the a-Si film under laser irradiation, and resulted in polycrystalline Si grains up to 100nm in diameter.

  • PDF

Flexible Low Power Consumption Active-Matrix OLED Displays

  • Hack, Mike;Chwang, Anna;Hewitt, Richard;Brown, Julie;Lu, JengPing;Shih, ChinWen;Ho, JackSon;Street, R.A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.609-613
    • /
    • 2005
  • Advanced mobile communication devices require a bright, high information content display in a small, light-weight, low power consumption package. In this paper we will outline our progress towards developing such a low power consumption active-matrix flexible OLED ($FOLED^{TM}$) display. Our work in this area is focused on three critical enabling technologies. The first is the development of a high efficiency long-lived phosphorescent OLED ($PHOLED{TM}$) device technology, which has now proven itself to be capable of meeting the low power consumption performance requirements for mobile display applications. Secondly, is the development of flexible active matrix backplanes, and for this our team are employing poly-Si TFTs formed on metal foil substrates as this approach represents an attractive alternative to fabricating poly-Si TFTs on plastic for the realization of first generation flexible active matrix OLED displays. Unlike most plastics, metal foil substrates can withstand a large thermal load and do not require a moisture and oxygen permeation barrier. Thirdly, the key to reliable operation is to ensure that the organic materials are fully encapsulated in a package designed for repetitive flexing. We also present progress in operational lifetime of encapsulated T-PHOLED pixels on planarized metal foil and discuss PHOLED encapsulation strategy.

  • PDF

Changes of dielectric surface state In organic TFTs on flexible substrate (유연한 기판상의 유기 트랜지스터의 절연 표면층 상태 변화에 의한 전기적 특성 향상)

  • Kim, Jong-Moo;Lee, Joo-Woo;Kim, Young-Min;Park, Jung-Soo;Kim, Jae-Gyeong;Jang, Jin;Oh, Myung-Hwan;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.86-89
    • /
    • 2004
  • Organic thin film transistors (OTFTs) are fabricated on the plastic substrate through 4-level mask process without photolithographic patterning to yield the simple fabrication process. And we herewith report for the effect of dielectric surface modification on the electrical characteristics of OTFTs. The KIST-JM-1 as an organic molecule for the surface modification is deposited onto the surface of zirconium oxide $(ZrO_2)$ gate dielectric layer. In this work, we have examined the dependence of electrical performance on the interface surface state of gate dielectric/pentacene, which may be modified by chemical properties in the gate dielectric surface.

  • PDF

The Effect of H content in Si Precursor on the Performance of Poly-Si Crystallized by Pulsed YAG2${\omega}$ Laser on Soft Substrate

  • Li, Juan;Ying, Yao;Meng, Zhiguo;Chunya, Wu;Xiong, Shaozhen;Kwok, Hoi-Sing
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1604-1607
    • /
    • 2009
  • YAG laser crystallization of Si-based thin film deposited on plastic substrate has been studied. The Si-based thin films as crystallization precursor are with varied hydrogen (H) content. The effect of the H content on the crystallinity of the resulted poly-Si film has been investigated. The experimental results of the poly-Si crystallized by doublefrequency YAG laser shows that the initial dehydrogenation process could be left out if ${\mu}c$-Si was adopted as the crystallization precursor. The YAG laser annealing condition on plastic substrate and the crystallization results have been discussed in the paper.

  • PDF

Flexible Active-Matrix Electrophoretic Display With Integrated Scan-And Data-Drivers

  • Miyazaki, Atsushi;Kawai, Hideyuki;Miyasaka, Mitsutoshi;Inoue, Satoshi;Shimoda, Tatsuya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.153-156
    • /
    • 2004
  • A newly developed flexible active-matrix (AM-) electrophoretic display (EPD) is reported. The AM-EPD features: (1) low-temperature polycrystalline silicon (LTPS) thin film transistor (TFT) technology, (2) fully integrated scan- and data-drivers, (3) flexibility and light-weight realized by transferring the whole circuits onto a plastic substrate using $SUFTLA^{TM}$ (Surface Free Technology by Laser Annealing/Ablation) process. A large storage capacitor is formed in each pixel so that driving electric field can be kept sufficiently strong during a writing period Two-phase driving scheme, a reset-phase which erases a previous image and a writing-phase for writing a new image, was chosen to cope with EPD's high driving voltage. The flexible AM-EPD has been successfully operated with a driving voltage of 8.5 V.

  • PDF

An Efficiency Improvement of the OLEDs due to the Thickness Variation on Hole-Injection Materials (정공주입물질 두께 변화에 따른 유기발광다이오드의 효율 개선)

  • Shin, Jong-Yeol;Guo, Yi-Wei;Kim, Tae-Wan;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.344-349
    • /
    • 2015
  • A new information society of late has arrived by the rapid development of various information & communications technologies. Accordingly, mobile devices which are light and thin, easy and convenient to carry on the market. Also, the requirements for the larger television sets such as fast response speed, low-cost electric power, wider visual angle display are sufficiently satisfied. The currently most widely studied display material, the Organic Light-emitting Diodes(OLEDs) overwhelms the Liquid Crystal Display(LCD), the main occupier of the market. This new material features a response speed of more than a thousand times faster, no need of backlight, a low driving voltage, and no limit of view angle. And the OLEDs has high luminance efficiency and excellent durability and environment resistance, quite different from the inorganic LED light source. The OLEDs with simple device structure and easy produce can be manufactured in various shapes such as a point light source, a linear light source, a surface light source. This will surely dominate the market for the next generation lighting and display device. The new display utilizes not the glass substrate but the plastic one, resulting in the thin and flexible substrate that can be curved and flattened out as needed. In this paper, OLEDs device was produced by changing thickness of Teflon-AF of hole injection material layer. And as for the electrical properties, the four layer device of ITO/TPD/$Alq_3$/BCP/LiF/Al and the five layer device of ITO/Teflon AF/TPD/$Alq_3$/BCP/Lif/Al were studied experimentally.

Ultra Thin Film Barrier Layer for Plastic OLED

  • Kopark, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Yang, Yong-Suk;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.44-47
    • /
    • 2004
  • Fabrication of barrier layer on PES substrate and plastic OLED device by atomic layer deposition are carried out. Simultaneous deposition of 30nm of $AlO_x$ film on both sides of PES gives film MOCON value of 0.0615g/$m^2$.day (@38$^{\circ}C$, 100% R.H). Introduction of conformal $AlO_x$ film by ALD resulted in enhanced barrier properties for inorganic double layered film including PECVO $SiN_x$. Preliminary life time to 91% of initial luminance (1300 cd/$m^2$ ) for 100nm of PECVD $SiN_x$/30nm of ALD $AlO_x$ coated plastic OLED device was 260 hours.

  • PDF