• Title/Summary/Keyword: plastic architecture

Search Result 445, Processing Time 0.026 seconds

Low Cycle Fatigue Performance of 304L Stainless Steel Weldments (304L 스테인리스 강 용접부의 저주기 피로 성능 평가)

  • Hwang, JaeHyoen;Oh, DongJin;Lee, DoYoung;Chun, MinSung;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.47-51
    • /
    • 2016
  • Recently, the market of liquefied natural gas is growing in accordance with shale gas development and environmentally friendly policies. Also, LNG is in the spotlight as an alternative fuel to previously used fossil fuel and the fuel for the ship to meet emission standards which takes effected by IMO (International Maritime Organization). According to growth of LNG, LNG carriers needs are also expected to increase significantly. This study investigates low cycle fatigue (LCF) performance of 304L stainless steel weldments to investigate fatigue performance in plastic strain region. 304L stainless steel is known to have improved fatigue performance at cryogenic conditions. LCF behavior are investigated by a strain-controlled condition up to 1% strain range and conducted with three different thickness (3mm, 5mm, 10mm). Also, test were performed with three different strain ratio R such as R = -1, -0, 0.5, Finally, the fatigue design curve for 304L stainless steel weldments at room tem- perature are proposed. Considering all test conditions, it is shown that LCF performance have similar tendency regardless of thickness and strain ratio. LCF design curve of 304L stainless steel weldments are lower than 304L stainless steel base metal.

Plasticity and Fracture Behaviors of Marine Structural Steel, Part I: Theoretical Backgrounds of Strain Hardening and Rate Hardening (조선 해양 구조물용 강재의 소성 및 파단 특성 I: 변형률 경화 및 변형률 속도 경화의 이론적 배경)

  • Choung, Joon-Mo;Shim, Chun-Sik;Kim, Kyung-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.134-144
    • /
    • 2011
  • In this paper, the global study trends for material behaviors are investigated regarding the static and dynamic hardenings and final fractures of marine structural steels. In particular, after reviewing all of the papers published at the 4th and 5th ICCGS (International Conference on Collision and Grounding of Ship), the used hardening and fracture properties are summarized, explicitly presenting the material properties. Although some studies have attempted to employ new plasticity and fracture models, it is obvious that most still employed an ideal hardening rule such as perfect plastic or linear hardening and a simple shear fracture criterion with an assumed value of failure strain. HSE (2001) presented pioneering study results regarding the temperature dependency of material strain hardening at various levels of temperature, but did not show strain rate hardening at intermediate or high strain rate ranges. Nemat-Nasser and Guo (2003) carried out fully coupled tests for DH-36 steel: strain hardening, strain rate hardening, and temperature hardening and softening at multiple steps of strain rates and temperatures. The main goal of this paper is to provide the theoretical background for strain and strain rate hardening. In addition, it presents the procedure and methodology needed to derive the material constants for the static hardening constitutive equations of Ludwik, Hollomon, Swift, and Ramberg-Osgood and for the dynamic hardening constitutive equations of power from Cowper-Symonds and Johnson-Cook.

The Modern Characteristics and Meanings of F. L. Wright's Winslow House (프랭크 로이드 라이트의 윈슬로 주택의 근대적 특성과 의미)

  • Park, Hyung-Jin;Woo, Chang-Ok
    • Korean Institute of Interior Design Journal
    • /
    • v.27 no.1
    • /
    • pp.109-116
    • /
    • 2018
  • Prairie style houses in first stages of Frank Lloyd Wright's architecture activity pay a leading role in the process of house modernization as reflecting social and economic circumstances of the time based on traditional house style of the States. Wright's first work after retiring from L. Sullivan's office, Winslow house in 1983 is pioneering work predicting prairie house. This is because this house has only one modern architecture language of Wright and follow no style prevailing of the time. So, a researcher analyse Winslow house within the framework of functional thinking and new formative value creation in the modernization process of western house. Through this, The goal of this study is to find out modern characteristics and the meaning of Winslow house in modernization process prior to the 1900s. Firstly, the followings are modern characteristics of Winslow house. First, Winslow house has original planning breaking from custom based on modern functional and reasonable thoughts, and has practical space reflecting resident's inner demand. Second, Winslow house has modern new plastic value through original exterior breaking from custom and integrated shape of inner-outer space and structure. Secondly, the followings are the meaning of Winslow house in modernization process prior to the 1900s. First, Wright intend to suggest directions of residence modernization through Winslow house before designing Prairie style houses in earnest. Second, mixing of modern vocabulary and eclecticism show a sign of residence modernization process on the time. Third, inner-outer flowing space, opening space concept of Winslow house has innovative meanings predicting spacial characteristics of modern architecture.

Seismic performance of high strength steel frames with variable eccentric braces based on PBSD method

  • Li, Shen;Wang, Ze-yu;Guo, Hong-chao;Li, Xiao-lei
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.527-542
    • /
    • 2020
  • In traditional eccentrically braced steel frames, damages and plastic deformations are limited to the links and the main structure members are required tremendous sizes to ensure elasticity with no damage based on the force-based seismic design method, this limits the practical application of the structure. The high strength steel frames with eccentric braces refer to Q345 (the nominal yield strength is 345 MPa) steel used for links, and Q460 steel utilized for columns and beams in the eccentrically brace steel frames, the application of high strength steels not only brings out better economy and higher strength, but also wider application prospects in seismic fortification zone. Here, the structures with four type eccentric braces are chosen, including K-type, Y-type, D-type and V-type. These four types EBFs have various performances, such as stiffness, bearing capacity, ductility and failure mode. To evaluate the seismic behavior of the high strength steel frames with variable eccentric braces within the similar performance objectives, four types EBFs with 4-storey, 8-storey, 12-storey and 16-storey were designed by performance-based seismic design method. The nonlinear static behavior by pushover analysis and dynamic performance by time history analysis in the SAP2000 software was applied. A total of 11 ground motion records are adopted in the time history analysis. Ground motions representing three seismic hazards: first, elastic behavior in low earthquake hazard level for immediate occupancy, second, inelastic behavior of links in moderate earthquake hazard level for rapid repair, and third, inelastic behavior of the whole structure in very high earthquake hazard level for collapse prevention. The analyses results indicated that all structures have similar failure mode and seismic performance.

A Study for the Minimum Weight Design of a Coastal Fishing Boat (소형 연안 어선의 최소 중량 설계에 관한 연구)

  • Song, Ha-Cheol;Kim, Yong-Sub;Shim, Chun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.32 no.3
    • /
    • pp.223-228
    • /
    • 2008
  • As most of small fishing boats made of FRP have been constructed by experience in Korea, some structural safety problems have been occurred occasionally. To improve the structural strength and reduce the costs for construction and operation, optimum design for small fishing boat was carried out in this study. The weight of fishing boat and the main dimensions of structural members are chosen as objective function and design variables, respectively. By the combination of global and local search methods, a hybrid optimization algorithm was developed to escape the local minima and reduce CPU time in analysis procedure, and finite element analysis was performed to determine the constraint parameters at each iteration step in optimization loop. Optimization results were compared with the real existing fishing boat, and the effects of optimum design were examined from points of view; structural strength, material cost, etc.

Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface (극한지용 고장력강의 평균 응력 삼축비 및 평균 정규 로드 파라메터를 고려한 3차원 파단 변형률 평면 개발: 제2부 파단 변형률 평면의 정식화)

  • Chong, Joonmo;Park, Sung-Ju;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.454-462
    • /
    • 2015
  • An extended study was conducted on the fracture criterion by Choung et al. (2011; 2012) and Choung and Nam (2013), and the results are presented in two parts. The theoretical background of the fracture and the results of new experimental studies were reported in Part I, and three-dimensional fracture surface formulations and verifications are reported in Part II. How the corrected true stress can be processed from the extrapolated true stress is first introduced. Numerical simulations using the corrected true stress were conducted for pure shear, shear-tension, and pure compression tests. The numerical results perfectly coincided with test results, except for the pure shear simulations, where volume locking appeared to prevent a load reduction. The average stress triaxialities, average normalized lode parameters, and equivalent plastic strain at fracture initiation were extracted from numerical simulations to formulate a new three-dimensional fracture strain surface. A series of extra tests with asymmetric notch specimens was performed to check the validity of the newly developed fracture strain surface. Then, a new user-subroutine was developed to calculate and transfer the two fracture parameters to commercial finite element code. Simulation results based on the user-subroutine were in good agreement with the test results.

Experimental Study on Seismic Performance of Beam-column Connections with High Strength Reinforcements (고장력 철근이 적용된 철근콘크리트 보-기둥 접합부 파괴모드에 대한 실험적 연구)

  • Kim, Dae-Hoon;Park, Aa-Ron;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.61-68
    • /
    • 2016
  • Behavior of RC(Reinforced-concrete) beam-column connections has been subjected to the earthquake loading has been determined by shear and attachment mechanism. However, since the shear and attachment are very fragile for cycle loadings. Through occurring plastic hinges at the beam, the column and the connection should remain elastic condition and the beam should dissipate the energy from the earthquake. This study was investigate on the seismic performance of 6 RC beam - column connections built with the high strength reinforcements (700MPa) based on design and detailing requirements in the ACI 318-05 Provision and KCI-07 appendix II. This is aimed to evaluate the effect of the high-strength reinforcements as used the beam-column connection members. The main comparisons were the seismic performance of the connections affect the seismic performance in terms of strength, stiffness and ductility, joint shear stress-strain. A total of 6 beam-column specimens were built with a 1/2 scale and subjected to the cyclic loadings. Main design considerations were the area of the longitudinal reinforcements of the beam and details of the beam-column joint designed based on the seismic code. Cyclic test results are given and recommendations for the usage of high strength reinforcements for the seismic design is provided.

Materials and Methods in Usonian Automatic House System of Frank Lloyd Wright (라이트의 유소니언 오토매틱 주택 시스템에 나타난 재료 및 공법에 관한 연구)

  • Kim, Tai Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • This study is to investigate the meaning and value of Usonian Automatic House System(UAHS) of Frank Lloyd Wright in his later period, focused on materials, methods, and his thoughts. The results of this study are follows. UAHS was the outcome of moderate cost and prefab house which Wright had successively attempted after the early Prairie period. The construction was simple and comparatively cheap, but subsequent automatics were difficult and expensive to build. Nevertheless, it was sufficiently flexible to support a rather wide range of house designs. Concrete was the inert mass and a plastic material. Wright saw a kind of weaving coming out of it. He also saw a kind of concrete masonry, steel for warp and masonry units for woof in the automatic concrete block. The reinforced bars in hollowed joints of concrete block increased the safety factor and affected the expression of the construction through the stabilization they provided. But they did not give concrete block the capability of structural span. Standardization as the soul of the machine might be seen in UAHS. The concrete blocks were more cheap, lighter, and larger hollowed plain than textile blocks in 1920s. But the variety of pattern and different block types in the UAHS were achieved at some sacrifice of standardization. The repetitive nature of production was compromised for artistic goals. The sense of compromise was not maximized, however, because the units as installed looked far more repetitive than they actually were.

A Case Study on the Architectural Planning of Floating Hotel (플로팅 호텔의 건축계획에 대한 사례연구)

  • Moon, Chang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.35 no.6
    • /
    • pp.515-522
    • /
    • 2011
  • This research is intended to suggest some reference materials for the future planning of floating hotel, by reviewing the concept of floating hotel and analyzing the realized and planned ones through the search of related documents and homepages. Floating hotel can be defined as a building for living/recreation/work/entertainment with floating system on water, but without navigation tool. In terms of sequence, the River Kawi Jungle Rafts Resort was built in 1976, Four Seasons Hotel in 1988, and Salt & Sill in 2008. Floating hotels are various in scale(height) and size(room numbers), and have basic, cultural, health & marina facilities. Architectural characteristics of sample facilities can be summarized as self-supporting of the facilities, environmentally friendly architectural planning, utilization of renewable energy, introduction of new plastic composite material, and provision of same view from all bedrooms by rotating the building.

Cyclic loading behavior of high-strength steel framed-tube structures with replaceable shear links constructed using Q355 structural steel

  • Guo, Yan;Lian, Ming;Zhang, Hao;Cheng, Qianqian
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.827-841
    • /
    • 2022
  • The rotation capacities of the plastic hinges located at beam-ends are significantly reduced in traditional steel framed-tube structures (SFTSs) because of the small span-to-depth ratios of the deep beams, leading to the low ductility and energy dissipation capacities of the SFTSs. High-strength steel framed-tube structures with replaceable shear links (HSSFTS-RSLs) are proposed to address this issue. A replaceable shear link is located at the mid-span of a deep spandrel beam to act as a ductile fuse to dissipate the seismic energy in HSSFTS-RSLs. A 2/3-scaled HSSFTS-RSL specimen with a shear link fabricated of high-strength low-alloy Q355 structural steel was created, and a cyclic loading test was performed to study the hysteresis behaviors of this specimen. The test results were compared to the specimens with soft steel shear links in previous studies to investigate the feasibility of using high-strength low-alloy steel for shear links in HSSFTS-RSLs. The effects of link web stiffener spaces on the cyclic performance of the HSSFTS-RSLs with Q355 steel shear links were investigated based on the nonlinear numerical analysis. The test results indicate that the specimen with a Q355 steel shear link exhibited a reliable and stable seismic performance. If the maximum interstory drift of HSSFTS-RSL is designed lower than 2% under earthquakes, the HSSFTS-RSLs with Q355 steel shear links can have similar seismic performance to the structures with soft steel shear links, even though these shear links have similar shear and flexural strength. For the Q355 steel shear links with web height-to-thickness ratios higher than 30.7 in HSSFTS-RSLs, it is suggested that the maximum intermediate web stiffener space is decreased by 15% from the allowable space for the shear link in AISC341-16 due to the analytical results.