• Title/Summary/Keyword: plasmid content

Search Result 84, Processing Time 0.025 seconds

Metabolic Analysis of Poly(3-Hydroxybutyrate) Production by Recombinant Escherichia coli

  • WONG, HENG HO;RICHARD J. VAN WEGEN;JONG-IL CHOI;SANG YUP LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.593-603
    • /
    • 1999
  • Poly(3-hydroxybutyrate) (PHB) production by fermentation was examined under both restricted- and ample-oxygen supply conditions in a single fed-batch fermentation. Recombinant Escherichia coli transformed with the PHB production plasmid pSYLl07 was grown to reach high cell density (227 g/l dry cell weight) with a high PHB content (78% of dry cell weight), using a glucose-based minimal medium. A simple flux model containing 12 fluxes was developed and applied to the fermentation data. A superior closure (95%) of the carbon mass balance was achieved. When the data were put into use, the results demonstrated a surprisingly large excretion of formate and lactate. Even though periods of severe oxygen limitation coincided with rapid acetate and lactate excretion, PHB productivity and carbon utilization efficiency were not significantly impaired. These results are very positive in reducing oxygen demand in an industrial PHA fermentation without sacrificing its PHA productivity, thereby reducing overall production costs.

  • PDF

Antioxidant Activity of a Red Seaweed Polysiphonia morrowii Extract

  • Je, Jae-Young;Ahn, Chang-Bum;Oh, Myung-Joo;Kang, So-Young
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.124-129
    • /
    • 2009
  • Antioxidant activities of the extract of red seaweed, Polysiphonia morrowii, were evaluated using several in vitro assay systems. Activity-guided fractionation revealed that the 90% MeOH fraction of the P. morrowii extract exhibited the highest antioxidant activity, and that this fraction had a high total phenolic content ($135.7{\pm}5.0\;mg$ gallic acid/g extract). Therefore, the antioxidant activities of the 90% MeOH fraction against 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical, reducing power, ferrous chelating, and hydrogen peroxide were investigated. The results revealed that the antioxidant activities of the 90% MeOH fraction were similar and/or superior to that of commercial antioxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). In addition, the ability of the 90% MeOH fraction to inhibit oxidative damage to DNA was assessed by measuring the conversion of the supercoiled pBR322 plasmid DNA to the open circular form. The 90% MeOH fraction was found to significantly protect this hydroxyl radical-induced DNA damage in a dose-dependent manner. Taken together, these findings suggest that the 90% MeOH fraction of P. morrowii extract and/or its constituents has the potential for use as a new bioresource of antioxidants.

Complete genome of a denitrifying Halioglobus sp. RR3-57 isolated from a seawater recirculating aquaculture system (순환여과양식시스템으로부터 분리된 Halioglobus sp. RR3-57의 유전체 분석)

  • Kim, Young-Sam;Noh, Eun Soo;Lee, Da-Eun;Kim, Kyoung-Ho
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.58-60
    • /
    • 2017
  • Halioglobus sp. RR3-57 was isolated from a biofilter of a seawater recirculating aquaculture system and its complete genome sequence was obtained using the PacBio RS II platform. Two circular contigs were assembled and considered as a chromosome and a plasmid (size of 4,847,776 bp and 155,799 bp, and G+C content of 57.5% and 53.2%, respectively). Genomic analysis showed RR3-57 had 18 denitrification-related genes and an incomplete prophage.

Complete genome sequence of an indigo producing strain Yangia sp. TSBP01, isolated from oil-contaminated sediment (인디고 생산능이 있는 Yangia sp. TSBP01의 유전체 분석)

  • Kim, Hae-Seon;Cha, Sun Ho;Suk, Ho Young;Park, Nyun-Ho;Woo, Jung-Hee
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.293-294
    • /
    • 2018
  • Yangia sp. TSBP01, isolated from tidal flat sediment contaminated by the oil spill, is known to convert indole to indigo via an intermediate called indoxyl. Our analysis revealed that Yangia sp. TSBP01 contained the genome of 5,165,974 bp (G + C content: 66.5%) being composed of two chromosomes and five plasmids. This strain had genes encoding several oxygenases such as indole oxygenase directly involved in the conversion of indole to indoxyl.

Isolation and Characterization of a Restricted Facultatively Methylotrophic Bacterium Methylovorus sp. Strain SS1 (제한통성 메탄올자화세균인 Methylovorus sp. Strain SS1의 분리 및 특성)

  • Seo, Sung A.;Kim, Young M.
    • Korean Journal of Microbiology
    • /
    • v.31 no.3
    • /
    • pp.179-183
    • /
    • 1993
  • A restricted facultatively methanol-oxidizing bacterium, Methylovorus sp. strain SS1, was isolate dfrom soil samples from Kuala Lumpur, Malaysia, through methanol-enrichment culture technique. The isolate was nonmotile Gram-negative rod and did not have complex internal membrane system. The colonies were small, pale-yellow, and raised convex with entire margin. The cell did not produce any spores and capsular materials. The cell was obligately aerobic and exhibited catalase, but no oxidase, activity. Plasmid, carotenoid pigment, and poly-.betha.-hydroxybutyric acid were not found. The guanine plus cytosine content of the DNA was 55%. The isolate was found to grow only on methanol methylamine, or glucose. Growth factors were not required. Cells growing on methanol was found to produce extracellular polysaccharides containing glucose, lactose, and fructose. Growth was optimal (t$_{d}$= 1.7) with 0.5%(v/v) methanol at 40.deg.C and pH 6.5. No Growth was observed at over 60.deg.C. Cell-free extracts of the methanol grown cells exhibited the phenazine methosulfate-linked methanol dehydrogenase activity Methanol was found to be assimilate dthrough the ribulose monophosphate pathway.y.

  • PDF

Complete genome sequence of bacteriocin-producing Ligilactobacillus salivarius B4311 isolated from fecal samples of broiler chicken with anti-listeria activity

  • Subin Han;Arxel G. Elnar;Chiwoong Lim;Geun-Bae Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.232-236
    • /
    • 2024
  • Ligilactobacillus is a genus of Gram-positive lactobacilli commonly found in the intestinal tracts of vertebrates. It has been granted a Qualified Presumption of Safety (QPS) status from the European Food Safety Authority (EFSA). One specific strain, Ligilactobacillus salivarius B4311, was isolated from fecal samples of broiler chickens from a farm associated with Chung-Ang University (Anseong, Korea). This strain was observed to have inhibitory effects against Listeria monocytogenes. In this paper, we present the complete genome sequence of Lig. salivarius B4311. The whole genome of strain B4311 comprises 2,071,255 bp assembled into 3 contigs representing a chromosome, repA-type megaplasmid, and small plasmid. The genome contains 1,963 protein-coding sequences, 22 rRNA genes, and 78 tRNA genes, with a guanine + cytosine (GC) content of 33.1%. The megaplasmid of strain B4311 was found to contain the bacteriocin gene cluster for salivaricin P, a two-peptide bacteriocin belonging to class IIb.

Poly(Ethylene Glycol)-branched Polyethylenimine-poly(L-phenylalanine) Block Copolymer Synthesized by Multi-initiation Method for Formation of More Stable Polyelectrolyte Complex with Biotherapeutic Drugs

  • Park, Woo-Ram;Na, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • An amphiphilic cationic branched methoxy poly (ethylene glycol)-branched polyethylenimine - poly(L-phenylalanine) (mPEG-bPEI-pPhe) block copolymer was successfully synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of L-phenylalanine (Phe-NCA) with mPEG-bPEI for the preparation of more stable polyelectrolyte complex (PEC) included a hydrophobic interaction. mPEG-bPEI was firstly prepared by the coupling of mPEG and bPEI using hexamethylene diisocyanate (HMDI). The structural properties of mPEG-bPEI-pPhe copolymers were confirmed by $^1H$ NMR. The copolymers exhibited a self-assemble behavior in water above critical aggregate concentration (CAC) in the range of 0.01-0.14 g/L. The CAC of copolymers obviously depended on the hydrophobic block content in the copolymers (the value decreased with the increase of the pPhe block content). The cationic copolymers have the ability to form multi-interaction complex (MIC) with bovine serum albumin (BSA) and plasmid DNA through multi-interaction (electrostatic and hydrophobic interaction). The physicochemical characterization of the complex was carried out by the measurement of zeta potential and particle size. Their zeta-potentials were positive (approximately +10 mV) and their sizes decreased with increasing pPhe contents in the copolymers (PPF/BSA wt% ratio = 2). The complex showed good stability at high ionic strength. Therefore, mPEG-bPEI-pPhe block copolymer was considered as a potential material to enhance the stability of complex including biotherapuetic drugs.

Genomic Insights of Weissella jogaejeotgali FOL01 Reveals Its Food Fermentation Ability and Human Gut Adaptive Potential for Probiotic Applications in Food Industries

  • Ku, Hye-Jin;Kim, You-Tae;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.943-946
    • /
    • 2017
  • Although the genus Leuconostoc, generally found in various fermented foods, has often been suggested to be a novel probiotic for food fermentation and health promotion, the strains in this genus showed low acid tolerance and low osmotic stress resistance activities, which are required for survival during food fermentation events. Recently, a novel species of Weissella, W. jogaejeotgali $FOL01^T$ (= KCCM 43128 = JCM 30580), was isolated from Korean fermented clams. To determine the genomic features of this new species, its genome was completely sequenced and analyzed. The genome consists of a circular chromosome of 2,114,163 bp of DNA with a G+C content of 38.8%, and the plasmid pFOL01 consists of 35,382 bp of DNA with a G+C content of 39.1%. The genome analysis showed its potential for use in food fermentation and osmotic stress resistance abilities for processing in food industries. In addition, this strain was predicted to have acid tolerance and adhesion to the mucosal layer for survival and colonization in the gut. Subsequent experiments substantiated these abilities, suggesting that W. jogaejeotgali may have probiotic potential and a high survival rate during food fermentation. Therefore, it may be suitable as a novel probiotic strain for various applications in food industries.

Pilot Scale Production of Poly (3-Hydroxybutyrate-co-3-hydroxy-valerate) by Fed-batch Culture of Recombinant Escherichia coli

  • Park, Jong-il;Lee, Sang-Yup;Kyungsup Shin;Lee, Woo-Gi;Park, Si-Jae;Chang, Ho-Nam;Chang, Yong-Keun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.371-374
    • /
    • 2002
  • Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[P(3HB/V)], by fed-batch culture of recombinant Escherichia coli harboring a plasmid containing the Alcaligenes latus polyhy-droxyalkanoate (PHA) biosynthesis genes, was examined in two pilot-scale fermentors with air supply only, In a 30 L fermentor having a XLa value of 0.11 S­$^1$, the final P(3HB/V) concentration and the P(3HB/V) content obtained were 29.6 g/L and 70.1 wt%, respectively giving a productivity of 1.37 g P(3HB/V)/L-h. In a 300 L fermentor having a XLa of 0.03 S­$^1$, the P(3HB/V) concentration and the P(3HB/V) content were 20.4 g/L and 69 wt%, respectively giving a productivity of 1.06g P(3HB/V)/L-h. These results suggest that economical production of P(3HB/V) is possible by fed-batch culture of recombinant E. coli in a large-scale fermentor having low KLa value.

Antioxidant and Cytoprotective Effects of Lotus (Nelumbo nucifera) Leaves Phenolic Fraction

  • Lee, Da-Bin;Kim, Do-Hyung;Je, Jae-Young
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • Phenolic rich ethyl acetate fraction (EAF) from lotus leaves was prepared and its bioactive components, antioxidant and cytoprotective effects were investigated. EAF showed high total phenolic content and flavonoid content and contained rutin ($11,331.3{\pm}4.5mg/100g\;EAF$), catechin ($10,853.8{\pm}5.8mg/100g\;EAF$), sinapic acid ($1,961.3{\pm}5.6mg/100g\;EAF$), chlorogenic acid ($631.9{\pm}2.3mg/100g\;EAF$), syringic acid ($512.3{\pm}2.5mg/100g\;EAF$), and quercetin ($415.0{\pm}2.1mg/100g\;EAF$). EAF exerted the $IC_{50}$ of $4.46{\mu}g/mL$ and $5.35{\mu}g/mL$ toward DPPH and ABTS cation radicals, respectively, and showed strong reducing power, which was better than that of ascorbic acid, a positive control. Additionally, EAF protected hydroxyl radical-induced DNA damage indicated by the conversion of supercoiled pBR322 plasmid DNA to the open circular form and inhibited lipid peroxidation of polyunsaturated fatty acid in a linoleic acid emulsion. In cultured hepatocytes, EAF exerted a cytoprotective effect against oxidative stress by inhibiting intracellular reactive oxygen species formation and membrane lipid peroxidation. In addition, depletion of glutathione under oxidative stress was remarkably restored by treatment with EAF. The results suggest that EAF have great potential to be used against oxidative stress-induced health conditions.