DOI QR코드

DOI QR Code

Poly(Ethylene Glycol)-branched Polyethylenimine-poly(L-phenylalanine) Block Copolymer Synthesized by Multi-initiation Method for Formation of More Stable Polyelectrolyte Complex with Biotherapeutic Drugs

  • Park, Woo-Ram (Department of Biotechnology, The Catholic University of Korea) ;
  • Na, Kun (Department of Biotechnology, The Catholic University of Korea)
  • Received : 2011.03.21
  • Accepted : 2011.03.31
  • Published : 2011.04.20

Abstract

An amphiphilic cationic branched methoxy poly (ethylene glycol)-branched polyethylenimine - poly(L-phenylalanine) (mPEG-bPEI-pPhe) block copolymer was successfully synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of L-phenylalanine (Phe-NCA) with mPEG-bPEI for the preparation of more stable polyelectrolyte complex (PEC) included a hydrophobic interaction. mPEG-bPEI was firstly prepared by the coupling of mPEG and bPEI using hexamethylene diisocyanate (HMDI). The structural properties of mPEG-bPEI-pPhe copolymers were confirmed by $^1H$ NMR. The copolymers exhibited a self-assemble behavior in water above critical aggregate concentration (CAC) in the range of 0.01-0.14 g/L. The CAC of copolymers obviously depended on the hydrophobic block content in the copolymers (the value decreased with the increase of the pPhe block content). The cationic copolymers have the ability to form multi-interaction complex (MIC) with bovine serum albumin (BSA) and plasmid DNA through multi-interaction (electrostatic and hydrophobic interaction). The physicochemical characterization of the complex was carried out by the measurement of zeta potential and particle size. Their zeta-potentials were positive (approximately +10 mV) and their sizes decreased with increasing pPhe contents in the copolymers (PPF/BSA wt% ratio = 2). The complex showed good stability at high ionic strength. Therefore, mPEG-bPEI-pPhe block copolymer was considered as a potential material to enhance the stability of complex including biotherapuetic drugs.

Keywords

References

  1. Akagi, T., Watanabe, K., Kim, H., Akashi, M., 2009. Stabilization of Polyion Complex Nanoparticles Composed of Poly (amino acid) Using Hydrophobic Interactions. Langmuir 26, 2406-2413.
  2. Brewer, S.H., Glomm, W.R., Johnson, M.C., Magne, K., Franzen, S., 2005. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21, 9303-9307. https://doi.org/10.1021/la050588t
  3. Chelushkin, P.S., Lysenko, E.A., Bronich, T.K., Eisenberg, A., Kabanov, V.A., Kabanov, A.V., 2008. Polyion Complex Nanomaterials from Block Polyelectrolyte Micelles and Linear Polyelectrolytes of Opposite Charge. 2. Dynamic Properties. J. Phy. Chem. B 112, 7732-7738. https://doi.org/10.1021/jp8012877
  4. Chen, L., Tian, H., Chen, J., Chen, X., Huang, Y., Jing, X., 2010. Multi armed poly (L glutamic acid) graft oligoethylenimine copolymers as efficient nonviral gene delivery vectors. J.Gene Med. 12, 64-76. https://doi.org/10.1002/jgm.1405
  5. Cho, Y.W., Lee, J., Lee, S.C., Huh, K.M., Park, K., 2004. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. J. Controlled Release 97, 249-257. https://doi.org/10.1016/j.jconrel.2004.03.013
  6. Hagan, S., Coombes, A., Garnett, M., Dunn, S., Davies, M., Illum, L., Davis, S., Harding, S., Purkiss, S., Gellert, P., 1996. Polylactide-poly (ethylene glycol) copolymers as drug delivery systems. 1. Characterization of water dispersible micelle-forming systems. Langmuir 12, 2153-2161. https://doi.org/10.1021/la950649v
  7. Harada, A., Kataoka, K., 1995. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly (ethylene glycol) segments. Macromolecules 28, 5294-5299. https://doi.org/10.1021/ma00119a019
  8. Hu, F.Q., Wu, X., Du, Y.Z., You, J., Yuan, H., 2008. Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin. Eur. J. Pharm. Biopharm. 69, 117-125. https://doi.org/10.1016/j.ejpb.2007.09.018
  9. Huh, K.M., Lee, S.C., Cho, Y.W., Lee, J., Jeong, J.H., Park, K., 2005. Hydrotropic polymer micelle system for delivery of paclitaxel. J. Controlled Release 101, 59-68. https://doi.org/10.1016/j.jconrel.2004.07.003
  10. Jaturanpinyo, M., Harada, A., Yuan, X., Kataoka, K., 2004. Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde. Bioconjugate Chem. 15, 344-348. https://doi.org/10.1021/bc034149m
  11. Jeong, Y.I., Nah, J.W., Lee, H.C., Kim, S.H., Cho, C.S., 1999. Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly ([gamma]-benzyl-glutamate) as the hydrophobic part and poly (ethylene oxide) as the hydrophilic part. Int. J. Pharm. 188, 49-58. https://doi.org/10.1016/S0378-5173(99)00202-1
  12. Kabanov, A.V., Bronich, T.K., Kabanov, V.A., Yu, K., Eisenberg, A., 1996. Soluble stoichiometric complexes from poly (N-ethyl-4-vinylpyridinium) cations and poly (ethylene oxide)-block-polymethacrylate anions. Macromolecules 29, 6797-6802. https://doi.org/10.1021/ma960120k
  13. Kakizawa, Y., Harada, A., Kataoka, K., 1999. Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond. J. Am. Chem. Soc. 121, 11247-11248. https://doi.org/10.1021/ja993057y
  14. Kataoka, K., Harada, A., Nagasaki, Y., 2001. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Delivery Rev. 47, 113-131. https://doi.org/10.1016/S0169-409X(00)00124-1
  15. Kataoka, K., Togawa, H., Harada, A., Yasugi, K., Matsumoto, T., Katayose, S., 1996. Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules 29, 8556-8557. https://doi.org/10.1021/ma961217+
  16. Katayose, S., Kataoka, K., 1997. Water-soluble polyion complex associates of DNA and poly (ethylene glycol)-poly (L-lysine) block copolymer. Bioconjugate Chem. 8, 702-707. https://doi.org/10.1021/bc9701306
  17. Kim, G.M., Bae, Y.H., Jo, W.H., 2005. pH induced Micelle Formation of Poly (histidine co phenylalanine) block Poly (ethylene glycol) in Aqueous Media. Macromol. Biosci. 5, 1118-1124. https://doi.org/10.1002/mabi.200500121
  18. Kunath, K., von Harpe, A., Fischer, D., Kissel, T., 2003. Galactose-PEI-DNA complexes for targeted gene delivery: degree of substitution affects complex size and transfection efficiency. J. Controlled Release 88, 159-172. https://doi.org/10.1016/S0168-3659(02)00458-3
  19. Lee, E.S., Park, K.H., Kang, D., Park, I.S., Min, H.Y., Lee, D.H., Kim, S., Kim, J.H., Na, K., 2007. Protein complexed with chondroitin sulfate in poly (lactide-co-glycolide) microspheres. Biomaterials 28, 2754-2762. https://doi.org/10.1016/j.biomaterials.2007.01.049
  20. Lee, Y., Ishii, T., Cabral, H., Kim, H.J., Seo, J.H., Nishiyama, N., Oshima, H., Osada, K., Kataoka, K., 2009. Charge Conversional Polyionic Complex Micelles-Efficient Nanocarriers for Protein Delivery into Cytoplasm. Angew. Chem. 121, 5413-5416. https://doi.org/10.1002/ange.200900064
  21. Park, S.J., Na, K., 2010. Self-organized Nanogels of Polysaccharide Derivatives in Anti-Cancer Drug Delivery. J. Pharm. Invest. 40, 201-212. https://doi.org/10.4333/KPS.2010.40.4.201
  22. Park, W., Na, K., 2009a. Dermatan sulfate as a stabilizer for protein stability in poly (lactide-co-glycolide) depot. Biotechnol. Bioproc. E. 14, 668-674. https://doi.org/10.1007/s12257-009-0058-3
  23. Park, W., Na, K., 2009b. Polyelectrolyte complex of chondroitin sulfate and peptide with lower pI value in poly (lactide-co-glycolide) microsphere for stability and controlled release. Colloids Surf. B 72, 193-200. https://doi.org/10.1016/j.colsurfb.2009.04.002
  24. Park, W., Park, S., Na, K., Potential of self-organizing nanogel with acetylated chondroitin sulfate as an anti-cancer drug carrier. Colloids Surf. B 79, 501-508.
  25. Petersen, H., Fechner, P.M., Fischer, D., Kissel, T., 2002. Synthesis, Characterization, and Biocompatibility of Polyethylenimine-g raft-poly (ethylene glycol) Block Copolymers. Macromolecules 35, 6867-6874. https://doi.org/10.1021/ma012060a
  26. Piao, L., Dai, Z., Deng, M., Chen, X., Jing, X., 2003. Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst. Polymer 44, 2025-2031. https://doi.org/10.1016/S0032-3861(03)00087-9
  27. Tian, H.Y., Deng, C., Lin, H., Sun, J., Deng, M., Chen, X., Jing, X., 2005. Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: synthesis and micelle characterization. Biomaterials 26, 4209-4217. https://doi.org/10.1016/j.biomaterials.2004.11.002
  28. Yin, H., Lee, E.S., Kim, D., Lee, K.H., Oh, K.T., Bae, Y.H., 2008. Physicochemical characteristics of pH-sensitive poly (L-histidine)- b-poly (ethylene glycol)/poly (L-lactide)-b-poly (ethylene glycol) mixed micelles. J. Controlled Release 126, 130-138. https://doi.org/10.1016/j.jconrel.2007.11.014
  29. Yuan, X., Harada, A., Yamasaki, Y., Kataoka, K., 2005. Stabilization of lysozyme-incorporated polyion complex micelles by the -end derivatization of poly (ethylene glycol)-Poly(${\alpha},{\beta}$‚-aspartic acid) block copolymers with hydrophobic groups. Langmuir 21, 2668-2674. https://doi.org/10.1021/la0488811
  30. Zhang, J., Zhou, Y., Zhu, Z., Ge, Z., Liu, S., 2008. Polyion Complex Micelles Possessing Thermoresponsive Coronas and Their Covalent Core Stabilization via "Click" Chemistry. Macromolecules 41, 1444-1454. https://doi.org/10.1021/ma702199f