• Title/Summary/Keyword: plasma-focus device

Search Result 23, Processing Time 0.026 seconds

The study on X-ray generation in the Coaxial Plasma focus Device (동축 플라즈마 집속장치에서의 x-선 방출에 관한 연구)

  • 엄영현
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.65-69
    • /
    • 1989
  • Mather type dense plasma focus device was develooped for the feasibili쇼 study in its application to the x-ray lithography. To etermine the electrical characteristics,the temporal begavior of the discharge current and the voltage was measured by using the Rogowski coil and the high voltage probe respectively. The results are 9 $\mu\textrm{s}$ of the period, 18m$\Omega$ of resistance and 0.16$\mu$Η of inductance. The average current sheath velocity was measured by the light signal emitted at the moving plasma sheath. The light signal was detected through two fiber bundles. When the applied voltage was 13 kV and the initial jpressure of argon was 21.8 Pa, the best plasma focus was occurred. The x-ray emission characteristics from the plasma focus was determined by the x-ray pictures taken by pinhole camera. It is focus that the plasma was focused at 1.4 cm distant position above the center electrode and its diameter was about 1.0 m.

  • PDF

Extreme Ultraviolet Plasma and its Emission Characteristics Generated from the Plasma Focus in Accordance with Gas Pressure for Biological Applications

  • Kim, Jin Han;Lee, Jin Young;Kim, Sung Hee;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.178.2-178.2
    • /
    • 2013
  • Conventional ultraviolets A,B,C are known to be very important factor of killing, changing surface properties of biological cells and materials. It is of great importance to investigate the influence of extreme ultraviolet (EUV) exposure on the biological cell. Here we have studied high density EUV plasma and its emission characteristics, which have been generated by plasma focus device with hypercycloidal pinch (HCP) electrode under various Ar gas pressures ranged from 30~500 mTorr in this experiment. We have also measured the plasma characteristics generated from the HCP plasma focus device such as electron temperature by the Boltzman plot, plasma density by the Stark broading method, discharge images by open-shuttered pin hole camera, and EUV emission signals by using the photodiode AXUV-100 Zr/C.

  • PDF

A feasibility study of the Iranian Sun mather type plasma focus source for neutron capture therapy using MCNP X2.6, Geant4 and FLUKA codes

  • Nanbedeh, M.;Sadat-Kiai, S.M.;Aghamohamadi, A.;Hassanzadeh, M.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1002-1007
    • /
    • 2020
  • The purpose of the current study was to evaluate a spectrum formulation set employed to modify the neutron spectrum of D-D fusion neutrons in a IS plasma focus device using GEANT4, MCNPX2.6, and FLUKA codes. The set consists of a moderator, reflector, collimator and filters of fast neutron and gamma radiation, which placed on the path of 2.45 MeV neutron energy. The treated neutrons eliminate cancerous tissue with minimal damage to other healthy tissue in a method called neutron therapy. The system optimized for a total neutron yield of 109 (n/s). The numerical results indicate that the GEANT4 code for the cubic geometry in the Beam Shaping Assembly 3 (BSA3) is the best choice for the energy of epithermal neutrons.

Dependence of Gas Pressure on Cr Oxide Thin Film Growth Using a Plasma Focus Device (플라즈마 포커스를 이용한 크롬 산화물 박막 성장의 분위기 기체 압력 의존성 연구)

  • Jung, Kyoo-Ho;Lee, Jae-Kap;Im, Hyun-Sik;Karpinski, L.;Scholz, M.;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.308-312
    • /
    • 2007
  • Chromium oxide thin films have been deposited on silicon substrates using a tabletop 9kJ mathertyped plasma focus (PF) device. Before deposition, pinch behavior with gas pressure was observed. Strength of pinches was increased with increasing working pressure. Deposition was performed at room temperature as a function of working pressure between 50 and 1000 mTorr. Composition and surface morphology of the films were analyzed by Auger Electron Spectroscopy and Scanning Electron Microscope, respectively. Growth rates of the films were decreased with pressure. The oxide films were polycrystalline containing some impurities, Cu, Fe, C and revealed finer grain structure at lower pressure.

Measurement of EUV (Extreme Ultraviolet) and electron temperature in a hypocycloidal pinch device for EUV lithography

  • Lee, Sung-Hee;Hong, Young-June;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.108-108
    • /
    • 2010
  • We have generated Ne-Xe plasma in dense plasma focus device with hypocycloidal pinch for extreme ultraviolet (EUV) lithography and investigated an electron temperature. We have applied an input voltage 4.5 kV to the capacitor bank of 1.53 uF and the diode chamber has been filled with Ne-Xe(30%) gas in accordance with pressure. If we assumed that the focused plasma regions satisfy the local thermodynamic equilibrium (LTE) conditions, the electron temperature of the hypocycloidal pinch plasma focus could be obtained by the optical emission spectroscopy (OES). The electron temperature has been measured by Boltzmann plot. The light intensity is proportion to the Bolzman factor. We have been measured the electron temperature by observation of relative Ne-Xe intensity. The EUV emission signal whose wavelength is about 6~16 nm has been detected by using a photo-detector (AXUV-100 Zr/C, IRD) and the line intensity has been detected by using a HR4000CG Composite-grating Spectrometer.

  • PDF

Damage studies on irradiated tungsten by helium ions in a plasma focus device

  • Seyyedhabashy, Mir mohammadreza;Tafreshi, Mohammad Amirhamzeh;bidabadi, Babak Shirani;Shafiei, Sepideh;Nasiri, Ali
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.827-834
    • /
    • 2020
  • Damage of tungsten due to helium ions of a PF device was studied. The tungsten was analyzed by SEM and AFM after irradiation. SEM revealed fine bubbles of helium atoms with diameters of a few nanometers, which join and form larger bubbles and blisters on the surface of tungsten. This observation confirmed the results of molecular dynamics simulation. SEM analysis after etching of the irradiated surface indicated cavities with depth range of 35-85 nm. The average fluence of helium ion of the PF device was calculated about 5.2 × 1015 cm-2 per shot, using Lee code. Energy spectrum of helium ions was estimated using a Thomson parabola spectrometer as a function of dN/dE ∝ E-2.8 in the energy range of 10-200 keV. The characteristics of helium ion beam was imported to SRIM code. SRIM revealed that the maximum DPA and maximum helium concentration occur in the depth range of 20-50 nm. SRIM also showed that at depth of 30 nm, all of the tungsten atoms are displaced after 20 shots, while at depth of higher than 85 nm the destruction is insignificant. There is a close match between SRIM results and the measured depths of cavities in SEM images of tungsten after etching.

Influence of Ne-Xe Gas Mixture Ratio on the Extreme Ultraviolet (EUV) Emission Measurement from the Coaxially Focused Plasma

  • Lee, Sung-Hee;Hong, Young-June;Choi, Duk-In;Uhm, Han-Sup;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.220-220
    • /
    • 2011
  • The Ne-Xe plasmas in dense plasma-focus device with coaxial electrodes were generated for extreme ultraviolet (EUV) lithography. The influence of gas mixture ratio, Ne-Xe (1, 10, 15, 20, 25, 30, 50%) mixture gas, on EUV emission measurement, EUV intensity and electron temperature in the coaxially focused plasma were investigated. An input voltage of 4.5 kV was applied to the capacitor bank of 1.53mF and the diode chamber was filled with Ne-Xe mixture gas at a prescribed pressure. The inner surface of the cylindrical cathode was lined by an acetal insulator. The anode was made of tin metal. The EUV emission signal of the wavelength in the range of 6~16 nm has been detected by a photo-detector (AXUV-100 Zr/C, IRD). The visible emission line was also detected by the composite-grating spectrometer of the working wavelength range of 200~1100 nm (HR 4000CG). The electron temperature is obtained by the optical emission spectroscopy (OES) and measured by the Boltzmann plot with the assumption of local thermodynamic equilibrium (LTE).

  • PDF

Fabrication of the Plasma Focus Device for Advanced Lithography Light Source and Its Electro Optical Characteristics in Argon Arc Plasma (차세대 리소그래피 빛샘 발생을 위한 플라스마 집속 장치의 제작과 아르곤 아크 플라스마의 발생에 따른 회로 분석 및 전기 광학적 특성 연구)

  • Lee S.B.;Moon M.W.;Oh P.Y.;Song K.B.;Lim J.E.;Hong Y.J.;Yi W.J.;Choi E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.380-386
    • /
    • 2006
  • In this study, we had designed and fabricated the plasma focus device which can generate the light source for EUV(Extreme Ultra Violet) lithography. And we also have investigated the basic electrical characteristics of currents, voltages, resistance and inductance of this system. Voltage and current signals were measured by C-dot and B-dot probe, respectively. We applied various voltages of 1.5, 2, 2.5 and 3 kV to the anode electrode and observed voltages and current signals in accordance with various Ar pressures of 1 mTorr to 100 Torr in diode chamber. It is observed that the peak values of voltage and current signals were measured at 300 mTorr, where the inductance and impedance were also estimated to be 73 nH and $35 m{\Omega}$ respectively. The electron temperature has been shown to be 13000 K at the diode voltage of 2.5 kV and this gas pressure of 300 mTorr. It is also found that the ion density Ni and ionization rate 0 have been shown to be $N_i = 8.25{\times}10^{15}/cc$ and ${\delta}$= 77.8%, respectively by optical emission spectroscopy from assumption of local thermodynamic equilibrium(LTE) plasma.

Spectroscopy of Visible Light Emitted from Plasma Occurred by Pulse Discharge (펄스형 방전플라스마에서 발생하는 가시광선의 분광특성 연구)

  • Choi, Woon Sang
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 1998
  • We investigated visible light radiated from Plasma focus device by time-resolved analyzed method and time-integrated analyzed method. Plasma focus consisted of two coaxial electrodes is a device that translated from electric energy of maximum 40 kV/20 kJ in capacitor banks into visible light by electric discharge. Spectral analysis is using Monochromator(f =0.5m). Time-resolved spectrum is analyzed with a oscilloscope the light pulse of constant wavelength and time-integrated spectrum does with densitometer the film which developed a constant range of wavelength. The optimum condition of visible emission was that the discharging voltage was 17kV and the gas pressure 0.5 torr Ar.

  • PDF

Spectroscopy of visible light emitted from plasma occurred by pulse discharge(II) (펄스형 방전플라스마에서 발생하는 가시광선의 분광(II))

  • Choi, Woon Sang;Jung, Soo Ja;Kim, Yong Hun;Jang, Jun Kyu;Jung, Jung Bok;Shin, Jang Cheol
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.163-165
    • /
    • 2000
  • We investigated visible light radiated from Plasma Focus device by time-integrated analyzed method. Plasma focus is a device that translated from electric energy into visible light by electric discharge. Spectral analysis is using Monochromator(focal length = 0.5 m). Time-integrated spectrum is analyzed with densitometer the film which developed a constant range of wavelength. The condition of visible emission was that the discharging voltage was 13 kV and the working gas were Argon and Helium.

  • PDF