• Title/Summary/Keyword: plasma triglycerides

Search Result 163, Processing Time 0.029 seconds

Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb

  • Jiang, Hongqin;Wang, Zhenzhen;Ma, Yong;Qu, Yanghua;Lu, Xiaonan;Luo, Hailing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.958-965
    • /
    • 2015
  • Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old) were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate) or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p<0.05, linearly), total triglycerides (TG, p<0.05) and low-density lipoprotein cholesterol (LDL-C, p<0.05), as well as atherogenic index (p<0.001), whereas no change was observed in high-density lipoprotein cholesterol (p>0.05). The levels of TG (p<0.001) and LDL-C (p<0.001) were decreased with the feeding time extension, and both showed a linear trend (p<0.01). Malondialdehyde level in plasma and liver decreased linearly with the increase of lycopene inclusion levels (p<0.01). Dietary lycopene intake linearly increased the plasma antioxidant vitamin E level (p<0.001), total antioxidant capacity (T-AOC, p<0.05), and activities of catalase (CAT, p<0.01), glutathione peroxidase (GSH-Px, p<0.05) and superoxide dismutase (SOD, p<0.05). The plasma T-AOC and activities of GSH-Px and SOD decreased with the extension of the feeding time. In liver, dietary lycopene inclusion showed similar antioxidant effects with respect to activities of CAT (p<0.05, linearly) and SOD (p<0.001, linearly). Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment stress and maintain normal physiological metabolism.

Effects of Hangbisan, an Oriental Medicine, on Body Weight Gain in Diet-Induced Obese (DID) rats

  • Chae, Myoung-Hee;No, Jin-Gu;Jhon, Deok-Young
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.158-161
    • /
    • 2006
  • This study was designed to determine possible weight loss effects of Hangbisan, an oriental medicine, on Sprague-Dawley (SD) rats. SD rats that were fed a high-fat diet for 6 weeks to induce obesity and subsequently fed with a basic diet containing 10%(w/w) Hangbisan or 10%(w/w) cellulose for 8 weeks. The Hangbisan fed rats demonstrated a significantly (p<0.05) reduced weight gain compared to the cellulose fed rats as well as a reduced level of plasma cholesterol and triglycerides and an increased level of (HDL)-cholesterol. These results suggest that dietary Hangbisan has an anti-obesity effect in the high-fat diet-induced obesity (DIG) rat and therefore a potential use as an anti-obesity agent in the application of oriental medicine compounds.

The Influence of Lipids on Exocrine Pancreatic Secretions in Pigs - Review -

  • Jakob, S.;Mosenthin, R.;Sauer, W.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.711-719
    • /
    • 2000
  • The characteristics of the exocrine pancreatic secretions in pigs and its hormonal regulation as influenced by dietary lipids are reviewed. There is clear evidence that the secretion of lipolytic enzymes is positively correlated with the amount of fat consumed by the pig. For example, there was an increase in the specific lipase activity by 83% after the dietary fat content was increased from 5% to 25%. Moreover, it was shown that also the quality of fat has an influence on exocrine pancreatic secretions. Peroxidized canola oil stimulated total lipase secretion much more than non-peroxidized oil. The influence of fatty acid composition on exocrine pancreatic secretions is discussed equivocally. Some authors showed that saturated fats stimulated the exocrine pancreatic secretions more than unsaturated. Others showed that the chain length of fatty acids had a strong influence on pancreatic secretions as well. Due to the different surgical methods used for sampling of pancreatic juice and wide variety of fats and oils used in these studies, direct comparisons between studies are extremely difficult to make. Plasma levels of hormones such as cholecystokinin (CCK), neurotensin (NT) and peptide YY (PYY) are influenced by the nutrient composition of the diet. With increasing amounts of fat present in the small intestine, the release of these hormones was stimulated. There is evidence that CCK release is dependent on the chain length of the fatty acids. Medium chain triglycerides stimulated the CCK release more than long chain triglycerides. Neurotensin was released more by unsaturated than by saturated fatty acids; similar results were observed for the PYY release. However, results are contradictory and further investigations are warranted that focus on the underlying mechanisms involved in the regulatory response of the exocrine pancreas to lipids of different origin.

Central energy metabolism remains robust in acute steatotic hepatocytes challenged by a high free fatty acid load

  • Niklas, Jens;Bonin, Anne;Mangin, Stefanie;Bucher, Joachim;Kopacz, Stephanie;Matz-Soja, Madlen;Thiel, Carlo;Gebhardt, Rolf;Hofmann, Ute;Mauch, Klaus
    • BMB Reports
    • /
    • v.45 no.7
    • /
    • pp.396-401
    • /
    • 2012
  • Overnutrition is one of the major causes of non-alcoholic fatty liver disease (NAFLD). NAFLD is characterized by an accumulation of lipids (triglycerides) in hepatocytes and is often accompanied by high plasma levels of free fatty acids (FFA). In this study, we compared the energy metabolism in acute steatotic and non-steatotic primary mouse hepatocytes. Acute steatosis was induced by pre-incubation with high concentrations of oleate and palmitate. Labeling experiments were conducted using [$U-^{13}C_5$,$U-^{15}N_2$] glutamine. Metabolite concentrations and mass isotopomer distributions of intracellular metabolites were measured and applied for metabolic flux estimation using transient $^{13}C$ metabolic flux analysis. FFAs were efficiently taken up and almost completely incorporated into triglycerides (TAGs). In spite of high FFA uptake rates and the high synthesis rate of TAGs, central energy metabolism was not significantly changed in acute steatotic cells. Fatty acid ${\beta}$-oxidation does not significantly contribute to the detoxification of FFAs under the applied conditions.

Reduction of Body Weight by Capsaicin is Associated with Inhibition of Glycerol-3-Phosphate Dehydrogenase Activity and Stimulation of Uncoupling Protein 2 mRNA Expression in Diet-induced Obese Rats

  • Ann, Ji-Young;Lee, Mak-Soon;Joo, Hyun-Jin;Kim, Chong-Tai;Kim, Yang-Ha
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.210-216
    • /
    • 2011
  • Capsaicin is a pungent component of red pepper, which is widely consumed as food adjuncts. The present study was performed to investigate anti-obesity effects of capsaicin in diet-induced obese rats. Male Sprague-Dawley rats (n=14) were fed with a high-fat diet (Control) or high-fat diet containing 0.016% capsaicin (w/w) (Capsaicin) for 8 weeks. The final body weight and the mass of white adipose tissue were significantly lower in capsaicin supplemented group compared to control. Dietary capsaicin ameliorated lipid profiles with decrease in the plasma concentrations of triglycerides and total cholesterol, and decrease in the levels of total lipids and triglycerides in the liver. Activity of glycerol-3-phosphate dehydrogenase (GPDH), an indicator of triglyceride biosynthesis in white adipose tissue, decreased by 35% in the group supplemented with capsaicin. However, consumption of capsaicin increased the expression of uncoupling protein 2 (UCP2) in white adipose tissue, which is related to energy consumption. Our data suggests that capsaicin may reduce body weight and fat accumulation in high fat diet-induced obese rats. These effects may be mediated, at least partially, by the upregulation of UCP2 gene expression and its ability to inhibit GPDH activity.

Physiological Role of a Multigrain Diet in Metabolic Regulations of Lipid and Antioxidant Profiles in Hypercholesteremic Rats -Multigrain diet in hyperlipemia-

  • Vasant, Rupal A.;Patel, Namrata D.;Karn, Sanjay S.;Narasimhacharya, Amaravadi V.R.L.
    • Journal of Pharmacopuncture
    • /
    • v.17 no.2
    • /
    • pp.34-40
    • /
    • 2014
  • Objectives: The objective of the present study was to investigate the lipid and the antioxidant regulatory potential of a multigrain diet in laboratory animals with reference to lipid profiles, tissue lipid peroxidation and antioxidant status. Methods: Two types of diets, with or without addition of cholesterol, were used in the study - a commercial diet and a formulated multigrain diet (with Sorghum vulgare, Avena sativa, Pennisetum typhoideum, Oryza sativa, Eleusine coracana and Zea mays grains). After a 10-week period of feeding the diets to albino rats the plasma, liver and fecal lipid profiles and the hepatic and renal antioxidant status of the animals that were fed the commercial and the formulated diets (with and without cholesterol addition) were assessed. Results: The commercial diet supplemented with cholesterol elevated the levels of plasma total lipids, total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL-C), and very low-density lipoprotein cholesterol (VLDL-C), as well as the atherogenic index (AI). The high-density lipoprotein cholesterol (HDL-C) content and the antioxidant profiles (total ascorbic acid, superoxide dismutase, catalase, glutathione peroxidase reduced glutathione) declined along with increases in lipid peroxidation. The formulated diet (with and without addition of cholesterol) was found to be more efficient than the commercial diet in controlling plasma, hepatic and fecal lipid profiles, as well as hepatic and renal lipid peroxidation and antioxidant status, than of the hypercholesteremic animals. Conclusion: The multigrain diet used in the present study is effective in countering the hyperlipidemia and oxidative stress caused by high cholesterol intake.

Hyperlipidemic Inhibitory Effects of Phellinus pini in Rats Fed with a High Fat and Cholesterol Diet

  • Im, Kyung Hoan;Choi, Jaehyuk;Baek, Seung-A;Lee, Tae Soo
    • Mycobiology
    • /
    • v.46 no.2
    • /
    • pp.159-167
    • /
    • 2018
  • This study evaluated the in vitro and in vivo hypolipidemic effects of the medicinal mushroom Phellinus pini. The methanol extract (ME) of the fruiting body of Ph. pini was active against pancreatic lipase and cholesterol esterase with 99.14% and 67.23% inhibited activity at 1.0 mg/mL, respectively. It also inhibited 81.81% and 55.33% of ${\alpha}$-glucosidase and ${\alpha}$-amylase activities, respectively, at 2.0 mg/mL. Hyperlipidemia as induced by feeding rats with a high fat and cholesterol diet (HFC). HFC supplemented with a 5% fruiting body powder of Ph. pini (HFC + PhP) significantly reduced plasma total cholesterol, low-density lipoprotein cholesterol, and triglycerides in rats compared with HFC. The reduced levels were comparable to rats fed the normal control diet (NC). The atherogenic index of HFC + PhP rats was significantly lower than that of the HFC rats. The excretion of fecal total lipid and cholesterol in the HFC + PhP rats was significantly higher than those in the NC and HFC rats. Histopathological examinations demonstrated scant deposition of lipids in the liver of rats fed HFC + PhP. The dietary supplementation with the fruiting body powder provided natural plasma lipid and glucose lowering effects in experimental rats without adverse effects on the plasma biochemical parameters and liver function related enzyme activities. Therefore, the hypolipidemic effects of Ph. pini may be due to the inhibitory effects on pancreatic lipase, cholesterol esterase, ${\alpha}$-glucosidase, and ${\alpha}$-amylase, and excretion of excess lipids and cholesterol in the feces.

Differential Expression of Metabolism-related Genes in Liver of Diabetic Obese Rats

  • Seo, Eun-Hui;Park, Eun-Jin;Park, Mi-Kyoung;Kim, Duk-Kyu;Lee, Hye-Jeong;Hong, Sook-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.99-103
    • /
    • 2010
  • The Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of spontaneous type 2 diabetes (T2D), develops hyperglycemic obesity with hyperinsulinemia and insulin resistance after the age of 25 weeks, similar to patients with noninsulin-dependent diabetes mellitus (DM). In the present study, we determined whether there are differences in the pattern of gene expression related to glucose and lipid metabolism between OLETF rats and their control counterparts, Long-Evans Tokushima (LETO) rats. The experiment was done using 35-week-old OLETF and LETO rats. At week 35 male OLETF rats showed overt T2D and increases in blood glucose, plasma insulin, plasma triglycerides (TG) and plasma total cholesterol (TC). Livers of diabetic OLETF and LETO rats also showed differences in expression of mRNA for glucose and lipid metabolism related genes. Among glucose metabolism related genes, GAPDH mRNA was significantly higher and FBPase and G6Pase mRNA were significantly lower in OLETF rats. For lipid metabolism related genes, HMGCR, SCD1 and HL mRNA were substantially higher in OLETF rats. These results indicate that gluconeogenesis in OLETF rats is lower and glycolysis is higher, which means that glucose metabolism might be compensated for by a lowering of the blood glucose level. However, lipid synthesis is increased in OLETF rats so diabetes may be aggravated. These differences between OLETF and LETO rats suggest mechanisms that could be targeted during the development of therapeutic agents for diabetes.

Role of hyperforin in diabetes and its associated hyperlipidemia in rats

  • Ineedi, Srikanth;Shakya, Anshul;Singh, Gireesh Kumar;Kumar, Vikas
    • CELLMED
    • /
    • v.2 no.3
    • /
    • pp.25.1-25.6
    • /
    • 2012
  • The aim of the present study was to evaluate the possible roles of hyperforin against hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. Diabetes was induced by a single intraperitoneal injection of streptozotocin (65 mg/kg). Biochemical parameters were measured following hyperforin treatment (10 mg/kg, i.p.) for 7 days. Hyperforin treatment significantly reversed the elevations in plasma glucose, triglycerides, total cholesterol and LDL-cholesterol. Hyperforin also reversed the declines in plasma HDL-cholesterol and liver glycogen, but did not reverse the change in plasma insulin levels when compared to the diabetic control rats. Hyperforin treatment also reversed the oxidative stress induced by streptozotocin. Moreover, the effect of the hyperforin on peripheral glucose utilization in normal rats was evaluated by an oral glucose tolerance test (OGTT). Hyperforin treatment significantly increased (p < 0.05) the glucose tolerance compared to the vehicle in OGTT. The antihyperglycemic, antihyperlipidemic and antioxidant activities of hyperforin (10 mg/kg, i.p.) were comparable qualitatively to glibenclamide (1 mg/kg, p.o.). In conclusion, we report for the first time through an in vivo study that hyperforin is potentially valuable for the treatment of diabetes and its associated hyperlipidemia and oxidative stress by enhancing the glucose utilization by peripheral tissues such as muscle and adipose tissues.

Folic acid supplementation reduces oxidative stress and hepatic toxicity in rats treated chronically with ethanol

  • Lee, Soo-Jung;Kang, Myung-Hee;Min, Hye-Sun
    • Nutrition Research and Practice
    • /
    • v.5 no.6
    • /
    • pp.520-526
    • /
    • 2011
  • Folate deficiency and hyperhomocysteinemia are found in most patients with alcoholic liver disease. Oxidative stress is one of the most important mechanisms contributing to homocysteine (Hcy)-induced tissue injury. However it has not been examined whether exogenous administration of folic acid attenuates oxidative stress and hepatic toxicity. The aim of this study was to investigate the in vivo effect of folic acid supplementation on oxidative stress and hepatic toxicity induced by chronic ethanol consumption. Wistar rats (n = 32) were divided into four groups and fed 0%, 12%, 36% ethanol, or 36% ethanol plus folic acid (10 mg folic acid/L) diets. After 5 weeks, chronic consumption of the 36% ethanol diet significantly increased plasma alanine transaminase (ALT) (P < 0.05) and aspartate transaminase (AST) (P < 0.05), triglycerides (TG) (P < 0.05), Hcy (P < 0.001), and low density lipoprotein conjugated dienes (CD) (P < 0.05) but decreased total radical-trapping antioxidant potential (TRAP) (P < 0.001). These changes were prevented partially by folic acid supplementation. The 12% ethanol diet had no apparent effect on most parameters. Plasma Hcy concentration was well correlated with plasma ALT (r = $0.612^{**}$), AST (r = $0.652^*$), CD (r = $0.495^*$), and TRAP (r = $-0.486^*$). The results indicate that moderately elevated Hcy is associated with increased oxidative stress and liver injury in alcohol-fed rats, and suggests that folic acid supplementation appears to attenuate hepatic toxicity induced by chronic ethanol consumption possibly by decreasing oxidative stress.