• Title/Summary/Keyword: plasma hormones

Search Result 147, Processing Time 0.025 seconds

Responses in Hepatic Xenobiotic Metabolizing Enzymes and Sex Hormones of Yellowfin Goby Acanthogobius flavimanus in Nakdong Estuary (낙동강 하구에서 채집한 문절망둑 Acanthogobius flavimanus의 간장 약물대사효소계와 성호르몬 농도)

  • Lee, Ji-Seon;Jeong, Jee-Hyun;Han, Chang-Hee;Shim, Won-Joon;Jeon, Joong-Kyun
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.2
    • /
    • pp.87-93
    • /
    • 2008
  • To assess effects of contaminants on fish in Nakdong river, feral yellowfin goby Acanthogobius flavimanus were caugt in two different sites and its hepatic monooxygenase enzyme, including cytochrome P450 (CYP), NADPH-cytochrome P450 reductase (P450R), NADH-cytochrome b5 reductase (b5R), ethoxyresorufin deethylase (EROD), glutathione S-transferase (GST) were quantitatively determined. Gonadosomatic index (GSI), hepatosomatic index (HSI) and three sex steroid hormone (17$\beta$-estradiol, E2; testosterone, T; 11-ketotestosterone, 11-KT) levels of the fish were also investigated. HSI of fish from polluted site (site 1) were significantly higher than that of unpolluted site (site 2), but GSI levels were significantly lower in polluted site. No significant differences in plasma 11-KT and T levels were observed in two sites surveyed. E2 level was, however, significantly (p<0.05) higher in female fish from site 1 than site 2. In addition, hepatic EROD activity and CYP level of site 1 fish were lower than those of site 2 fish, whereas relatively high levels of P450R, b5R and GST activities were found in site 1. The results imply that yellowfin goby, especially female fish in Nakdong river estuary are affected from contaminants disrupting sex steroid hormone system.

Insulin-like Growth Factor-I Regulates the FAT/CD36 Expression in C2C12 Skeletal Muscle Cells (C2C12 골격근 세포에서 FAT/CD36 발현 조절에 있어 Insulin-like growth factor-I이 미치는 영향)

  • Kim, Hye Jin;Yoon, Hae Min;Kim, Tae Young;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.758-763
    • /
    • 2016
  • Fatty acid transporters are key mediators of skeletal muscle lipid metabolism. Several protein groups have been implicated in cellular long-chain fatty acid uptake or oxidation, including fatty acid transporter proteins (FATPs), the plasma membrane fatty acid-binding protein (FABPpm), and the fatty acid translocase (FAT/CD36). FAT/CD36 is highly expressed in skeletal muscle and known to be regulated by various factors such as exercise and hormones. Insulin-like growth factor-I (IGF-I) is a well-known regulator of skeletal muscle cells. However, it has not been studied whether there is any interaction between IGF-I and FAT/CD36 in skeletal muscle cells. In this study, the effects of IGF-I treatment on FAT/CD36 induction were examined. Differentiated C2C12 cells were treated with 20 ng/ml of IGF-I at different time points. Treatment of C2C12 cells with IGF-I resulted in increased FAT/CD36 mRNA and protein expression. After 24 and 48 hr of IGF-I treatment, FAT/CD36 mRNA increased 89% and 24% respectively. The increase of both proteins returned to the control level after 72 hr of IGF-I treatment, suggesting that the FAT/CD36 gene is regulated pretranslationally by IGF-I in skeletal muscle cells. These results suggest that IGF-I can regulate the expression of FAT/CD36 in skeletal muscle cells. In conclusion, IGF-I induces a rapid transcriptional modification of the FAT/CD36 gene in C2C12 skeletal muscle cells and has modulating effects on fatty acid uptake proteins as well as oxidative proteins.

Investigation on the asymptomatic endometriosis of Korean indigenous cow in Gyeongsangnam-do (경남지역 한우 경산우의 무증상 자궁내막염에 관한 조사)

  • Cho, Jae-Hyeon;Kim, Cheol-Ho;Kim, Taeg-Seog;Kang, Ju-Bin;Han, Dong-Hyun;Koh, Phil-Ok;Won, Chung-Kil;Kim, Chung-Hui
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.2
    • /
    • pp.79-86
    • /
    • 2022
  • Reproductive disorders in cows cause economic loss in livestock farms. This study was carried out to investigate the incidence of endometriosis in the uterine of Korean indigenous cow (Hanwoo). In the present study, the uterine of 25 cows was provided by the slaughterhouse. As a result on a visual examination of the uterus, 18 out of 25 were visually normal, and 7 uteruses (28%) appeared rather pale and showed purulent or mucosal symptoms in Uterine horn. However, the results of hematological analysis showed that both RBC and WBC were normal and showed no signs of systemic inflammation, indicating 7 cows showed asymptomatic endometriosis. The inflammatory uterus (28%) showed a wide range of pathological conditions that elicit an inflammatory response, such as serous exudate and bleeding. Histological and microscopic analysis in the inflammatory group demonstrated that there was swelling of the uterine glands, and neutrophil, basophil, and lymphocyte appeared in the uterine gland. Moreover, plasma cells and hemosiderin-laden macrophages were increased in the endometrial stroma, which lead to inhibit pregnancy by suppression of the synthesis of pregnancy hormones, and the appearance of hemosiderin-laden macrophages is an indicator of intracellular bleeding. In summary, hematologically, it is a normal diagnosis in Korean indigenous cows, however, when the uterus was extracted and investigated microscopically, the asymptomatic endometriosis were evident. In order to achieve the goal of healthy cow management and breeding within 2 weeks after birth, cows' uterus should be washed, disinfected, and through thorough the hygiene management, it aims to prevent asymptomatic endometriosis to produce healthy offspring and reduce the breeding interval.

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.

Effect of Brown Seaweed Waste Supplementation on Lactational Performance and Endocrine Physiology in Holstein Lactating Cows (미역부산물의 첨가가 홀스타인 비유우의 비유성적과 내분비생리에 미치는 영향)

  • Lee, H.G.;Hong, Z.S.;Li, Z.H.;Xu, C.X.;Jin, X.;Jin, M.G.;Lee, H.J.;Choi, N.J.;Koh, T.S.;Choi, Yun-Jaie
    • Journal of Animal Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.573-582
    • /
    • 2005
  • This study was conducted to investigate effects of the brown seaweed waste(BSW) supplementation on milk production and related endocrine response in serum in Holstein dairy cows. A total of 14 Holstein dairy cows(initial mean live weight 625kg, average lactation days 225, Reproduction 2.4) were randomly allocated into control(basal diet) and treatment groups (4% BSW/basal diet) with 7 replications for 90 days. Dry matter intake was not affected by brown seaweed waste supplementation, but daily milk yield(kg) at the last experiment significantly increased (6.25kg) in treatment group compared with control group(p<0.05) at the last experiment. The plasma insulin-like growth factor(IGF)-1, triiodothyronine($T_3$) and thyroxine($T_4$) levels were significantly increased in treatment group compared with control group(p<0.05), although the concentration of plasma growth hormone(GH) was not significantly different. Milk composition was not significantly different between groups. The somatic cell count(SCC) in milk were significantly reduced in treatment group compared with control group(p<0.05), but antibodies(total IgG, G1, G2) were not significantly different between groups. Therefore we strongly believe that the increased milk yield is related to metabolic hormones as IGF-1, $T_3$ and $T_4$ and the mechanism of reducing SCC in milk must do more study related nonspecific immunsystem in the future.

Regulation of Tumor Neceosis Factor-${\alpha}$ Receptors and Signal Transduction Pathways

  • Han, Hyung-Mee
    • Toxicological Research
    • /
    • v.8 no.2
    • /
    • pp.343-357
    • /
    • 1992
  • Tumor necrosis factor-${\alpha}$(TNF), a polypeptide hormone secreted primarily by activated macrophages, was originally identified on the basis of its ability to cause hemorrhagic necrosis and tumor regression in vivo. Subsequently, TNF has been shown to be an important component of the host responses to infection and cancer and may mediate the wasting syndrome known as cachexia. These systemic actions of TNF are reflected in its diverse effects on target cells in vitro. TNF initiates its diverse cellular actions by binding to specific cell surface receptors. Although TNF receptors have been identified on most of animal cells, regulation of these receptors and the mechanisms which transduce TNF receptor binding into cellular responses are not well understood. Therefore, in the present study, the mechanisms how TNF receptors are being regulated and how TNF receptor binding is being transduced into cellular responses were investigated in rat liver plasma membranes (PM) and ME-180 human cervical carcinoma cell lines. $^{125}I$-TNF bound to high ($K_d=1.51{\pm}0.35nM$)affinity receptors in rat liver PM. Solubilization of PM with 1% Triton X-100 increased both high affinity (from $0.33{\pm}0.04\;to\;1.67{\pm}0.05$ pmoles/mg protein) and low affinity (from $1.92{\pm}0.16\;to\;7.57{\pm}0.50$ pmoles/mg protein) TNF binding without affecting the affinities for TNF, suggesting the presence of a large latent pool of TNF receptors. Affinity labeling of receptors whether from PM or solubilized PM resulted in cross-linking of $^{125}I$-TNF into $M_r$ 130 kDa, 90 kDa and 66kDa complexes. Thus, the properties of the latent TNF receptors were similar to those initially accessible to TNF. To determine if exposure of latent receptors is regulated by TNF, $^{125}I$-TNF binding to control and TNF-pretreated membranes were assayed. Specific binding was increased by pretreatment with TNF (P<0.05), demonstrating that hepatic PM contains latent TNF receptors whose exposure is promoted by TNF. Homologous up-regulation of TNF receptors may, in part, be responsible for sustained hepatic responsiveness during chronic exposure to TNF. As a next step, the post-receptor events induced by TNF were examined. Although the signal transduction pathways for TNF have not been delineated clearly, the actions of many other hormones are mediated by the reversible phosphorylation of specific enzymes or target proteins. The present study demonstrated that TNF induces phosphorylation of 28 kDa protein (p28). Two dimensional soidum dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) resolved the 28kDa phosphoprotein into two isoforms having pIs of 6.2 and 6.1. The pIs and relative molecular weight of p28 were consistent with those of a previously characterized mRNA cap binding protein. mRNA cap binding proteins are a class of translation initiation factors that recognize the 7-methylguanosine cap structure found on the 5' end of eukaryotic mRNAs. In vitro, these proteins are defined by their specific elution from affinity columns composed of 7-methylguanosine 5'-triphosphate($m^7$GTP)-Sepharose. Affinity purification of mRNA cap binding proteins from control and TNF treated ME-180 cells proved that TNF rapidly stimulates phosphorylation of an mRNA cap binding protein. Phosphorylation occurred in several cell types that are important in vitro models of TNF action. The mRNA cap binding protein phosphorylated in response to TNF treatment was purifice, sequenced, and identified as the proto-oncogene product eukaryotic initiation factor-4E(eIF-4E). These data show that phosphorylation of a key component of the cellular translational machinery is a common early event in the diverse cellular actions of TNF.

  • PDF

Annual Reproductive Cycle and Changes in Plasma Levels of Sex Steroid Hormones of the Female Korean Dark Sleeper, Odontobutis platycephala (Iwata et Jeon) (동사리, Odontobutis platycephala (Iwata et Jeon) 암컷의 생식주기와 혈중 성스테로이드 호르몬의 변화)

  • LEE Won-Kyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.599-607
    • /
    • 1998
  • To clarify annual reproductive cycle of Korean dark sleeper, Odontobutis platycephala (Iwata et Jeon), we examined the seasonal changes of gonadosomatic index (GSI), the proportional frequency of oocyte development stages in the ovary and the changes of sex steroid hormone levels in blood from December 1995 to November 1997. In July and August, GSI was 0.35 to 0.72 and most oocytes in the ovary were chromatin-nucleolus stage and perinucleolar stage (proportional frequency: $87\%\~96\%$). In September, GSI was 1.20 $\pm$ 0.12, some oocytes in the ovary were yolk vesifle stage (proportional frequency: $22.8\%$) and vitellogenic stage which appeared very rarely(proportional frequency: $2.2\%$). GSI increased gradually from October and reached 4.59± 0.61 to December. During this period, oocytes of vitellogenic stage increased slightly (proportional frequency in December: $22.1\%$). In January, GSI was 4.32 $\pm$ 0.72 but the proportional frequency of oocytes in vitellogenic stage increased (proportional frequency: $51.2\%$). from February, GSI was increased sharply and reached to 10.51 $\pm$ 1.04 in March, the highest value throughout the year and the proportional frequency of oocytes in vitellogenic stage also reached the highest levels (proportional frequency: $60\%$). From April, GSI was gradually decreased and fell down to 1.11 $\pm$ 0.35 in June. During this period, the proportional frequency of mature oocytes was the highest in April (proportional frequency of mature oocyte stage: $40\%$ in April, $12\%$ May, $5\%$ June) throughout the year, and atretic ovarian follicles were appeared. The blood level of estradiol-17$\beta$ ($E_2$), which stimulates the hepatic synthesis and secretion of vitellogenin, was $0.84{\pm}0.20\;ng/m{\ell}$ in August, and thereafter was not changed until December. from January, it increased sharply and reached the highest level of $ 2.85{\pm}0.35\;ng/m{\ell}$ in March throughout the year, but fell to $0.14{\pm}0.02\;ng/m{\ell}$ in July(P<0.05), 17$\alpha$-hydroxprogesterone(17$\alpha$-OHP) was the peak $13.37{\pm}0.52ng/m{\ell}$ in March, but no significant changes in other period(below $3ng/m{\ell}$, P<0.05). 17$\alpha$, 20$\beta$-dihydroxy-4-pregnen-3-one(17$\alpha$, 20$\beta$-P), which was known as the final maturation inducing hormone in teleost, was $0.74{\pm}0.09ng/m{\ell}$ in April and $0.54{\pm}0.07ng/m{\ell}$ in May, but no significant changes in other period (below $0.26\;ng/m{\ell}$, p<0.05). Taken together these results, the annual reproductive cycle of O. platycephala divided into 4 periods as follows: 1) ripe and spawning period from April to June, main spawning period was from April to May, 2) Resting period from July to August, 3) Growing period from September to December, 4) Maturing period from January to March. Moreover, It was showed that the changes of sex steroid hormone in blood played a important roles in the annual reproductive cycle of O. platycephala.

  • PDF