• Title/Summary/Keyword: plasma activated

Search Result 342, Processing Time 0.035 seconds

Betulinic Acid Stimulates Glucose Uptake through the Activation of PI3K and AMPK in 3T3-L1 Adipocytes (Betulinic acid의 PI3K와 AMPK경로 활성화를 통한 3T3-L1 지방세포에서 포도당 흡수 촉진 효과)

  • Lee, Jung Kyung;Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.762-770
    • /
    • 2022
  • Hyperglycemia in type 2 diabetes can be alleviated by promoting cellular glucose uptake. Betulinic acid (3β,-3-hydroxy-lup-20(29)-en-28-oic acid) is a pentacyclic lupane-type triterpenoid compound. Although there have been studies on the antidiabetic activity of betulinic acid, studies on cellular glucose uptake are lacking. We investigated the effects of betulinic acid on glucose uptake and its mechanism of action in 3T3-L1 adipocytes. Betulinic acid significantly stimulated glucose uptake in 3T3-L1 adipocytes by increasing the phosphorylation of the insulin receptor substrate 1-tyrosine (IRS-1tyr) in the insulin signaling pathway, which in turn stimulated the activation of phosphoinositide 3-kinase (PI3K) and the phosphorylation of protein kinase B (Akt). The activation of PI3K and Akt by betulinic acid translocated glucose transporter 4 to the plasma membrane (PM-GLUT4), thereby increasing the expression of PM-GLUT4 and thus stimulating cellular glucose uptake. Betulinic acid also significantly increased the phosphorylation/activation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase. The activation of PI3K and AMPK by betulinic acid was confirmed using the PI3K inhibitor wortmannin and the AMPK inhibitor compound C. The increase in glucose uptake induced by betulinic acid was significantly decreased by wortmannin and compound C in the 3T3-L1 adipocytes. These results suggest that betulinic acid stimulates glucose uptake by activating PI3K and AMPK in 3T3-L1 adipocytes.

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.

Allium hookeri Extract Improves Type 2 Diabetes Mellitus in C57BL/KSJ Db/db Obese Mouse via Regulation of Hepatic Lipogenesis and Glucose Metabolism (삼채 추출물의 인슐린 저항성 개선 효과 및 기전 탐색)

  • Kim, Ji-Soo;Heo, Jin-Sun;Choi, Jong-Won;Kim, Gun-Do;Sohn, Kie-Ho
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1081-1090
    • /
    • 2015
  • Diabetes has been one of major health risks in industrialized countries. Allium hookeri is a wild herb distributed in India and Myanmar. The root of the plant has been used as food and medicine in Southeast Asia. We investigated Allium hookeri extract improves type 2 diabetes mellitus in C57BL/KSJ db/db obese mouse. C57BL/KSJ db/db obese mouse arise out of Type 2 diabetes and we treated Allium hookeri methanol extract 400 mg/kg (AH 400), 800 mg/kg (AH 800), positive control group (thiazolidinedine;TZDs) were administered orally for 8weeks. AH treated group normalized lipid enzyme system (triglyceride, total cholesterol, HDL-cholesterol and LDL-cholesterol) and serum glucose, HbA1c and plasma insulin level. AH treated group recovered β-cell damage by hyperglycemia and fatty liver disease. AH treated group significantly up regulated expression of Peroxisome proliferator-activated receptor gamma (PPAR-γ), pyruvate dehydrogenase kinase4 (PDK4), Sterol regulatory element-binding protein 1c (SREBP 1) and fork head box O1 (FOX 01) proteins in C57BL/KSJ db/db obese mouse liver. And we found that AH treated group decreased hepatic malondialdehyde formation in C57BL/KSJ db/db obese mouse liver. These results indicate that Allium hookeri methanol extract might be a potential anti-diabetic agent and could be useful in the treatment of type 2 diabetes mellitus.

Lactate Dehydrogenase and Monocarboxylate Transporters 1, 2, and 4 in Tissues of Micropterus salmoides (큰입우럭(Micropterus salmoides) 조직의 젖산탈수소효소 및 Monocarboxylate 수송체(MCT) 1, 2, 4)

  • Yum, Jung-Joo;Yeon, Jun-Hee
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.98-109
    • /
    • 2012
  • The properties of lactate dehydrogenase (EC 1.1.1.27, LDH) and expression of monocarboxylate transporters (MCTs) 1, 2, and 4 were studied in tissues from Micropterus salmoides. Native-PAGE revealed that the LDH $A_4$ isozyme was predominantly located in skeletal muscle. The LDH $A_4$, $A_2B_2$, and $B_4$ isozymes were detected in heart, liver, eye, and brain tissues, while eye-specific $C_4$ isozyme was detected in eye tissue. In September, strong LDH $B_4$ isozyme activity was detected in heart tissue. High $A_4$ isozyme activity was noted in all other tissues except heart tissue. However, in November, strong $A_4$ isozyme activity was detected in heart tissue. The LDH/CS (Citrate synthase, EC 4.1.3.7) ratio in skeletal muscle and heart tissues indicated that anaerobic metabolism was high in those tissues. Native-PAGE after immunoprecipitation showed that eye-specific $C_4$ isozyme was more similar to the $A_4$ than the $B_4$ isozyme. The LDH $A_4$ isozyme was purified by affinity chromatography. The molecular weight of subunit A was 37,200. The LDH activity in tissues was consistently 11.05~28.32% due to inhibition by 10 mM pyruvate. The $K_m^{PYR}$ of LDH in eye tissue was very low. The optimum pH for LDH in tissues was pH 7.5~8.0. The LDH $A_4$ isozyme was detected in mitochondria of skeletal muscle, whereas the $B_4$ and $A_2B_2$ isozymes were detected in heart tissue mitochondria. Western blot analysis indicated that MCTs 1, 2, and 4 were located in the plasma membrane and mitochondria of skeletal muscle and heart tissues. The sizes of MCTs 1, 2, and 4 in skeletal muscle were 60, 54~38, and 63 kDa, while those in heart tissue were 57, 54~38, and 55.5 kDa, respectively. In conclusion, M. salmoides appears to use anaerobic metabolism predominantly when adapted to a hypoxic environment. In highly activated skeletal muscle and heart tissue, energy production is controlled by inward and outward flows of pyruvate and lactate through MCTs 1, 2, and 4 in the plasma membrane and mitochondria, with effective adjustment by LDH isozymes.

Characterization of Microsomal ATPases Prepared from Tomato Roots (토마토 뿌리조직에서 분리한 마이크로솜 이온펌프의 특성)

  • Cho, Kwang-Hyun;Sakong, Jung;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.130-136
    • /
    • 1998
  • Microsomes of tomato roots were prepared and the activities of microsomal ATPases were measured in order to understand the molecular mechanisms of various ion transports. The activities of plasma membrane $H^+-ATPase$ and vacuolar $H^+-ATPase$ were evaluated to ${\sim}30%$ and ${\sim}38%$ of total microsomal ATPase activity by using their specific inhibitor, vanadate and nitrate $(NO^-_3)$, respectively. The inhibitory effects of vanadate and $NO^-_3$ were additive and the simultaneous additions of these two inhibitors decreased the total activity up to $50{\sim}70%$. The microsomal ATPase activity was regulated key pH and the maximal activity was obtained at pH 7.4. The activity of microsomal ATPase was increased by $K^+$ up to ${\sim}30%$ at the concentration of $K^+$ above 10 mM. However, the $K^+-induced$ increase in the activity was completely inhibited by the simultaneous addition of $Na^+$. To identify the ATPase activity regulated by $K^+$, the effects of specific inhibitors were measured. Vanadate and $NO^-_3$ inhibited total ATPase activity by 27% and 32% in the absence, of $K^+$ and by 27% and 40% in the presence of 120 mM $K^+$, respectively. These results suggest that $K^+$ increases the activity of $NO^-_3-sensitive$ vacuolar $H^+-ATPase$ but not that of vanadate-sensitive plasma membrane $H^+-ATPase$ since vanadate has no effect on $K^+-induced$ increase in ATPase activity. The microsomal ATPase activity was also decreased by increasing $Ca^{2+}$ concentration. Interestingly, $NO^-_3$ blocked the $Ca^{2+}-induced$ inhibition of microsomal ATPase activity; however, vanadate had no effect. These results imply that vacuolar $H^+-ATPase$ is activated by $K^+$ and inhibited by $Ca^{2+}$.

  • PDF

Alteration of Lipid Metabolism Related Proteins in Liver of High-Fat Fed Obese Mice (고지방식이 비만쥐의 지방관련 단백질의 변화)

  • Seo, Eun-Hui;Han, Ying;Park, So-Young;Koh, Hyong-Jong;Lee, Hye-Jeong
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1019-1026
    • /
    • 2010
  • Obesity and being overweight are strongly associated with the development of metabolic disease such as diabetes, hypertension, dyslipidemia. High-fat diet (HFD) is one of the most important factors which cause obesity. In this study, C57BL/6 mice were treated with a HFD for 22 weeks in order to induce obesity and hyperglycemia. Twenty-two weeks later, body weight and plasma glucose level of the HFD group were significantly increased, compared with the normal diet (ND) group. Intra-peritoneal glucose tolerance test (IPGTT) showed glucose intolerance in the HFD group compared with the ND group. These results confirmed that a HFD induced obesity and hyperglycemia in C57BL/6 mice. Plasma levels of triglyceride (TG) and total cholesterol (TC) were increased in the HFD group compared with the ND group. Hepatic levels of TG and TC were also increased by a HFD. To investigate the alteration of lipid metabolism in liver, proteins which are related to lipid metabolism were observed. Among lipid synthesis related enzymes, fatty acid synthase (FAS) and glycerol phosphate acyl transferase (GPAT) were significantly increased in the HFD group. Apolipoprotein B (apoB) and microsomal triglyceride transport protein (MTP), which are related to lipid transport, were significantly increased in the HFD group. Interestingly, protein level and phosphorylation of AMP-activated protein kinase (AMPK), which is known as a metabolic regulator, were significantly increased in the HFD group compared with the ND group. In the present study we suggest that HFD may physiologically increase the proteins which are related with lipid synthesis and lipid transport, but that HFD may paradoxically induce the activation of AMPK.

Sexual Reproduction in Unicellular Green Alga Chlamydomonas (수염녹두말속(Chlamydomonas) 단세포 녹조의 유성생식)

  • Lee, Kyu Bae
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.100-121
    • /
    • 2017
  • The sexual reproduction of the unicellular green alga Chlamydomonas is reviewed for a comprehensive understanding of the complex processes. The sexual life cycle of C. reinhardtii is distinguished into five main stages: gametogenesis, gamete activation, cell fusion, zygote maturation, and meiosis and germination. Gametogenesis is induced by nitrogen starvation in the environment. C. reinhardtii has two mating types: mating type plus ($mt^+$) and mating type minus ($mt^-$), controlled by a single complex mating type locus ($MT^+$ or $MT^-$) on linkage group VI. In the early gametogenesis agglutinins are synthesized. The $mt^+$ and $mt^-$ agglutinins are encoded by the autosomal genes SAG1 (Sexual AGglutination1) and SAD1 (Sexual ADhesion1), respectively. The agglutinins are responsible for the flagellar adhesion of the two mating type of gametes. The flagellar adhesion initiates a cAMP mediated signal transduction pathways and activates the flagellar tips. In response to the cAMP signal, mating structures between two flagella are activated. The $mt^+$ and $mt^-$ gamete-specific fusion proteins, Fus1 and Hap2/Gcs1, are present on the plasma membrane of the two mating structures. Contact of the two mating structures leads to develop a fertilization tubule forming a cytoplasmic bridge between the two gametes. Upon fusion of nuclei and chloroplasts of $mt^+$ and $mt^-$ cells, the zygotes become zygospores. It is notable that the young zygote shows uniparental inheritance of chloroplast DNA from the $mt^+$ parent and mitochondrial DNA from the $mt^-$ parent. Under the favorable conditions, the zygospores divide meiotically and germinate and then new haploid progenies, vegetative cells, are released.

Anti-Thrombogenic and Anti-Inflammatory Effects of Solvent Fractions from Leaves of Zanthoxylum Schinifolium (Sancho Namu) in Rats Fed High Fat Diet (고지방식이 흰쥐에서 산초나무 Butanol 및 Methylene Chloride 분획의 항혈전 및 항염증 작용)

  • Jang, Hyun-Seo;Rhee, Soon-Jae;Woo, Mi-Hee;Cho, Sung-Hee
    • Journal of Nutrition and Health
    • /
    • v.40 no.7
    • /
    • pp.606-615
    • /
    • 2007
  • This study was performed to investigate anti-thrombogenic, anti-inflammatory effects of n-BuOH (B) and $CH_2Cl_2$ (MC) fractions extracted from Sancho (Zanthoxylum. schinifolium) leaves in rats fed high fat diets. The experimental animal groups were consisted of eight including one 5% fat (N) and one 20% fat (H) without the test materials in diets and six H groups of feeding three levels (50, 100 and 150 mg/day) of the B and the MC fractions from Z. schinifolium, respectively. Plasma activated partial thromboplastin times and thrombin times of H group were decreased compared to the N group, but they were increased by feeding the MC fraction of 50 mg and over. Polymorphonuclear leukocyte 5#-lipo-xygenase activities and leukotriene $B_4$ contents of the H group were significantly increased compared to the N group, but they were decreased in the 100 mg and 150 mg of B fraction or the 150 mg of MC fraction fed groups. Liver cytochrome $P_{450}$, $O_2^-$, $H_2O_2$ and GSSG contents were increased by the high fat diet but decreased by feeding the B fraction or the MC fraction, while GSH content and glutathione S-transferase activity lowered by high fat diet were increased by feeding the two solvent fractions. The effects of the solvent fractions were evident at the level of 100 mg/day and over. The present results confirmed that two solvent fractions from the leaves of Z, schinifolium have enhancing effects on anti-thrombosis and anti-inflammation partly by antioxidant action and partly by direct modulation of the respective processeds. In conclusion, the n-BuOH and $CH_2Cl_2$ fractions from leaves of Z, schinifolium can be utilized as the proper ingredients of functional foods for preventing chronic degenerative disease.

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

Low Frequency Noise Induces Stress Responses in the Rat (흰쥐에서 저주파소음에 의한 스트레스 반응)

  • Choi, Woong-Ki;Lee, Kyu-Sop;Joung, Hye-Young;Lee, Young-Chang;Sohn, Jin-Hun;Lee, Bae-Hwan;Pyun, Kwang-Ho;Shim, In-Sop
    • Science of Emotion and Sensibility
    • /
    • v.10 no.3
    • /
    • pp.411-418
    • /
    • 2007
  • Exposure to low frequency noise(LFN) can lead to vibroacoustic diseases(VADs), which include a systemic disease with lesions in a broad spectrum of organs and a psychiatric condition. It is known that VAD is an established risk factor for the development of many psychological conditions in humans and rodents, including major depression and anxiety disorder. The present study investigated the effects of LFN on neuronal stress responses in the rat brain. The neuronal expression of the proto-oncogene c-fos in the paraventricular nucleus(PVN) of the hypothalamus and tyrosine hydroxylase(TH) in the LC was observed. The immunocytochemical detection of the Fos protein and TH has been used as a marker of neuronal activation in response to stress. In addition, corticosterone concentration was evaluated by using an enzyme-linked immunosorbent assay(ELISA). The LFN groups were exposed to 32.5Hz and 125Hz of noise(4hr/day for 2days). The numbers of c-fos and TH-immunoreactive cells in the PVN and LC were significantly increased in the LFN groups(32.5Hz and 125Hz) compared to the normal group. Corticosterone concentration in plasma was also increased in LFN groups. The present results demonstrated that exposure with LFN produced a pronounced increase in expression of c-Fos and TH in stress-relevant brain areas. These results suggest that the neural characteristics involved in LFN are similar to those activated by typical processive stressors. These results also suggest that the central and peripheral activations by LFN may be related to LFN-related negative behavioral dysfunctions such as VADs.

  • PDF