Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.10.762

Betulinic Acid Stimulates Glucose Uptake through the Activation of PI3K and AMPK in 3T3-L1 Adipocytes  

Lee, Jung Kyung (Department of Food Science and Nutrition, Pusan National University)
Park, Jae Eun (Department of Food Science and Nutrition, Pusan National University)
Han, Ji Sook (Department of Food Science and Nutrition, Pusan National University)
Publication Information
Journal of Life Science / v.32, no.10, 2022 , pp. 762-770 More about this Journal
Abstract
Hyperglycemia in type 2 diabetes can be alleviated by promoting cellular glucose uptake. Betulinic acid (3β,-3-hydroxy-lup-20(29)-en-28-oic acid) is a pentacyclic lupane-type triterpenoid compound. Although there have been studies on the antidiabetic activity of betulinic acid, studies on cellular glucose uptake are lacking. We investigated the effects of betulinic acid on glucose uptake and its mechanism of action in 3T3-L1 adipocytes. Betulinic acid significantly stimulated glucose uptake in 3T3-L1 adipocytes by increasing the phosphorylation of the insulin receptor substrate 1-tyrosine (IRS-1tyr) in the insulin signaling pathway, which in turn stimulated the activation of phosphoinositide 3-kinase (PI3K) and the phosphorylation of protein kinase B (Akt). The activation of PI3K and Akt by betulinic acid translocated glucose transporter 4 to the plasma membrane (PM-GLUT4), thereby increasing the expression of PM-GLUT4 and thus stimulating cellular glucose uptake. Betulinic acid also significantly increased the phosphorylation/activation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase. The activation of PI3K and AMPK by betulinic acid was confirmed using the PI3K inhibitor wortmannin and the AMPK inhibitor compound C. The increase in glucose uptake induced by betulinic acid was significantly decreased by wortmannin and compound C in the 3T3-L1 adipocytes. These results suggest that betulinic acid stimulates glucose uptake by activating PI3K and AMPK in 3T3-L1 adipocytes.
Keywords
AMPK; betulinic acid; glucose uptake; PI3K; 3T3-L1 adipocytes;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aiken, C. and Chen, C. H. 2005. Betulinic acid derivatives as HIV-1 antivirals. Trends Mol. Med. 11, 31-36.   DOI
2 Xie, R., Zhang, H., Wang, X. Z., Yang, X. Z., Wu, S. N., Wang, H. G., Shen, P. and Ma, T. H. 2017. The protective effect of betulinic acid (BA) diabetic nephropathy on streptozotocin (STZ)-induced diabetic rats. Food Funct. 8, 299-306.   DOI
3 Bijland, S., Mancini, S. J. and Salt, I. P. 2013. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin. Sci. 124, 491-507.   DOI
4 Carling, D. 2017. AMPK signalling in health and disease. Curr. Opin. Cell Biol. 45, 31-37.   DOI
5 Costa, G., Francisco, V., Lopes, M. C., Cruz, M. T. and Batista, M. T. 2012. Intracellular signaling pathways modulated by phenolic compounds: application for new anti-inflammatory drugs discovery. Curr. Med. Chem. 19, 2876-2900.   DOI
6 Di Pino, A. and DeFronzo, R. A. 2019. Insulin resistance and atherosclerosis: Implications for insulin-sensitizing agents. Endocr. Rev. 40, 1447-1467.   DOI
7 Fryer, L. G., Parbu-Patel, A. and Carling, D. 2002. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J. Biol. Chem. 277, 25226-25232.   DOI
8 Garcia, D. and Shaw, R. J. 2017. AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell. 66, 789-800.   DOI
9 Habegger, K. M., Hoffman, N. J., Ridenour, C. M., Brozinick, J. T. and Elmendorf, J. S. 2012. AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol. Endocrinology 153, 2130-2141.   DOI
10 Alkhateeb, A. and Bonen, A. 2010. Thujone, a component of medicinal herbs, rescues palmitate-induced insulin resistance in skeletal muscle. Am. J. Phys. Regul. Integr. Comp. Phys. 299, R804-R812.   DOI
11 Hu, X., Wang, S., Xu, J., Wang, D. B., Chen, Y. and Yang, G. Z. 2014. Triterpenoid saponins from Stauntonia chinensis ameliorate insulin resistance via the AMP-activated protein kinase and IR/IRS-1/PI3K/Akt pathways in insulin-resistant HepG2 cells. Int. J. Mol. Sci. 15, 10446-10458.   DOI
12 Gibbs, E. M., Stock, J. L., McCoid, S. C., Stukenbrok, H. A., Pessin, J. E., Stevenson, R. W., Milici, A. J. and McNeish, J. D. 1995. Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J. Clin. Invest. 95, 1512-1518.   DOI
13 Saltiel, A. R. and Kahn, C. R. 2001. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414, 799-806.   DOI
14 Jung, S. H., Ha, Y. J., Shim, E. K., Choi, S. Y., Jin, J. L., Yun-Choi, H. S. and Lee, J. R. 2007. Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator. Biochem. J. 403, 243-250.   DOI
15 Kanzaki, M. and Pessin, J. E. 2001. Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J. Biol. Chem. 276, 42436-42444.   DOI
16 Pirart, J. 1977. Diabetes mellitus and its degenerative compilations: a prospective study of 4400 patients observed between 1947 and 1973. Diabet. Metab. 3, 168-172.
17 Ramachandran, V. and Saravanan, R. 2015. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum. Exp. Toxicol. 34, 884-893.   DOI
18 Reaven, G. M. 1988. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595-1607.   DOI
19 Song, T. J., Park, C. H., In, K. R., Kim, J. B., Kim, J. H., Kim, M. and Chang, H. J. 2021 Antidiabetic effects of betulinic acid mediated by the activation of the AMPactivated protein kinase pathway. PLoS One 16, e0249109.
20 Sun, X. J., Rothenberg, P., Kahn, C. R., Backer, J. M., Araki, E., Wilden, P. A., Cahill, D. A., Goldstein, B. J. and White, M. F. 1991. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352, 73-77.   DOI
21 Shah, S. A., Akhtar, N., Akram, M., Shah, P. A., Saeed, T. and Ahmed, K. 2011. Hypoglycemic and hypolipidemic activity of Scopoletin (coumarin derivative) in streptozotocin induced diabetic rats. J. Med. Plant Res. 5, 5662-5666.
22 Gheorgheosu, D., Duicu, O., Dehelean, C., Soica, C. and Muntean, D. 2014. Betulinic acid as a potent and complex antitumor phytochemical: a minireview. Anticancer Agents Med. Chem. 14, 936-945.   DOI
23 Babu, P. V. A., Liu, D. and Gilbert, E. R. 2013. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J. Nutr. Biochem. 24, 1777-1789.   DOI
24 Chiu, H. K., Tsai, E. C. and Juneja, R. 2007. Equivalent insulin resistance in latent autoimmune diabetes in adults (LADA) and type 2 diabetic patients. Diabetes Res. Clin. Pract. 77, 237-244.   DOI
25 Ding, H., Wu, X., Pan, J., Hu, X., Gong, D. and Zhang, G. 2018. New Insights into the inhibition mechanism of betulinic acid on α-glucosidase. J. Agric. Food Chem. 66, 7065-7075.   DOI
26 Han, J. H., Zhou, W., Li, W., Tuan, P. Q., Nguyen, M. K., Thuong, P. T., Na, M. and Myung, C. S. 2015. Pentacyclic triterpenoids from Astilbe rivularis that enhance glucose uptake via the activation of Akt and Erk1/2 in C2C12 Myotubes. J. Nat. Prod. 78, 1005-1014.   DOI
27 Kamei, R., Kadokura, M., Kitagawa, Y., Hazeki, O. and Oikawa, S. 2003. 2'-Benzyloxychalcone derivatives stimulate glucose uptake in 3T3-L1 adipocytes. Life Sci. 73, 2091-2099.   DOI
28 Rajendran, P., Jaggi, M., Singh, M. K., Mukherjee, R. and Burman, A. C. 2008. Pharmacological evaluation of C-3 modified Betulinic acid derivatives with potent anticancer activity. Invest. New Drugs 26, 25-34.   DOI
29 Rios, J. L. and Manez, S. 2018. New pharmacological opportunities for betulinic acid. Planta Med. 84, 8-19.   DOI
30 Shoelson, S. E., Lee, J. and Goldfine, A. B. 2006. Inflammation and insulin resistance. J. Clin. Invest. 116, 1793-1801.   DOI
31 Yamaguchi, S., Katahira, H., Ozawa, S., Nakamichi, Y., Tanaka, T., Shimoyama, T., Takahashi, K., Yoshimoto, K., Imaizumi, M. O., Nagamatsu, S. and Ishida, H. 2005. Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am. J. Physiol. Endoc. 289, E643-E649.
32 Yamauchi, T., Kamon, J., Minokoshi, Y. A., Ito, Y., Waki, H., Uchisa, S., Yamashita, S., Noda, M., Kita, S., Ueki, K. and Eto, K. 2002. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288-1295.   DOI
33 Zhang, B. B., Zhou, G. and Li, C. 2009. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 9, 407-416.   DOI
34 Zimmet, P., Alberti, K. and Shaw, J. 2001. Global and societal implications of the diabetes epidemic. Nature 414, 782-787.   DOI
35 Weng, L. P., Smith, W. M., Brown, J. L. and Eng, C. 2001. PTEN inhibits insulin-stimulated MEK/MAPK activation and cell growth by blocking IRS-1 phosphorylation and IRS-1/Grb-2/Sos complex formation in a breast cancer model. Hum. Mol. Gen. 10, 605-616.   DOI