• 제목/요약/키워드: plasma activated

검색결과 341건 처리시간 0.025초

Hypotriglyceridemic effects of brown seaweed consumption via regulation of bile acid excretion and hepatic lipogenesis in high fat diet-induced obese mice

  • Han, A-Reum;Kim, Jae-Hoon;Kim, Eunyoung;Cui, Jiamei;Chai, In-Suk;Zhang, Guiguo;Lee, Yunkyoung
    • Nutrition Research and Practice
    • /
    • 제14권6호
    • /
    • pp.580-592
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: The present study aimed to further investigate the potential health beneficial effects of long-term seaweed supplementation on lipid metabolism and hepatic functions in DIO mice. MATERIALS/METHODS: Four brown seaweeds (Undaria pinnatifida [UP], Laminaria japonica [LJ], Sargassum fulvellum [SF], or Hizikia fusiforme [HF]) were added to a high fat diet (HFD) at a 5% ratio and supplemented to C57BL/6N mice for 16 weeks. Triglycerides (TGs) and total cholesterol (TC) in the liver, feces, and plasma were measured. Fecal bile acid (BA) levels in feces were monitored. Hepatic insulin signaling- and lipogenesis-related proteins were evaluated by Western blot analysis. RESULTS: Fasting blood glucose levels were significantly reduced in the LJ, SF, and HF groups compared to the HFD group by the end of 16-week feeding period. Plasma TG levels and hepatic lipid accumulation were significantly reduced in all 4 seaweed supplemented groups, whereas plasma TC levels were only suppressed in the UP and HF groups compared to the HFD group. Fecal BA levels were significantly elevated by UP, LJ, and SF supplementation compared to HFD feeding only. Lastly, regarding hepatic insulin signaling-related proteins, phosphorylation of 5'-AMP-activated protein kinase was significantly up-regulated by all 4 types of seaweed, whereas phosphorylation of protein kinase B was up-regulated only in the SF and HF groups. Lipogenesis-related proteins in the liver were effectively down-regulated by HF supplementation in DIO mice. CONCLUSIONS: Brown seaweed consumption showed hypotriglyceridemic effects in the prolonged DIO mouse model. Specifically, combinatory regulation of BA excretion and lipogenesis-related proteins in the liver by seaweed supplementation contributed to the reduction of plasma and hepatic TG levels, which inhibited hyperglycemia in DIO mice. Thus, the discrepant and species-specific functions of brown seaweeds provide novel insights for the selection of future targets for therapeutic agents.

[$Ca^{2+}$ Signalling in Endothelial Cells: Role of Ion Channels

  • Nilius, Bernd;Viana, Felix;Kamouchi, Masahiro;Fasolato, Cristina;Eggermont, Jan;Droogmans, Guy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권2호
    • /
    • pp.133-145
    • /
    • 1998
  • $Ca^{2+}-signals$ in endothelial cells are determined by release from intracellular stores and entry through the plasma membrane. In this review, the nature of $Ca^{2+}$ entry and mechanisms of its control are reviewed. The following ion channels play a pivotal role in regulation of the driving force for $Ca^{2+}$ entry: an inwardly rectifying $K^+$ channel, identified as Kir2.1, a big-conductance, $Ca^{2+}-activated$ $K^+$ channel (hslo) and at least two $Cl^-$ channels (a volume regulated $Cl^-$ channel, VRAC, and a $Ca^{2+}$ activated $Cl^-$ channel, CaCC). At least two different types of $Ca^{2+}$-entry channels exist: 1. A typical CRAC-like, highly selective $Ca^{2+}$ channel is described. Current density for this $Ca^{2+}$ entry is approximately 0.1pA/pF at 0 mV and thus 10 times smaller than in Jurkat or mast cells. 2. Another entry pathway for $Ca^{2+}$ entry is a more non-selective channel, which might be regulated by intracellular $Ca^{2+}$. Although detected in endothelial cells, the functional role of trp1,3,4 as possible channel proteins is unclear. Expression of trp3 in macrovascular endothelial cells from bovine pulmonary artery induced non-selective cation channels which are probably not store operated or failed to induce any current. Several features as well as a characterisation of $Ca^{2+}$-oscillations in endothelial cells is also presented.

  • PDF

Anti-Diabetic Effect of Pectinase-Processed Ginseng Radix (GINST) in High Fat Diet-Fed ICR Mice

  • Yuan, Hai Dan;Quan, Hai Yan;Jung, Mi-Song;Kim, Su-Jung;Huang, Bo;Kim, Do-Yeon;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • 제35권3호
    • /
    • pp.308-314
    • /
    • 2011
  • In the present study, we investigate anti-diabetic effect of pectinase-processed ginseng radix (GINST) in high fat diet-fed ICR mice. The ICR mice were divided into three groups: regular diet group, high fat diet control group (HFD), and GINSTtreated group. To induce hyperglycemia, mice were fed a high fat diet for 10 weeks, and mice were administered with 300 mg/kg of GINST once a day for 5 weeks. Oral glucose tolerance test revealed that GINST improved glucose tolerance after glucose challenge. Compared to the HFD control group, fasting blood glucose and insulin levels were decreased by 57.8% (p<0.05) and 30.9% (p<0.01) in GINST-treated group, respectively. With decreased plasma glucose and insulin levels, the insulin resistance index of the GINST-treated group was reduced by 68.1% (p<0.01) compared to the HFD control group. Pancreas of GINST-treated mice preserved a morphological integrity of islets and consequently having more insulin contents. In addition, GINST up-regulated the levels of phosphorylated AMP-activated protein kinase (AMPK) and its target molecule, glucose transporter 4 (GLUT4) protein expression in the skeletal muscle. Our results suggest that GINST ameliorates a hyperglycemia through activation of AMPK/GLUT4 signaling pathway, and has a therapeutic potential for type 2 diabetes.

표면 개질에 따른 Ti-8wt.%Ta-3wt.%Nb 합금의 생체적합성 (Biocompatibility of Ti-8wt.%Ta-3wt.%Nb alloy with Surface Modification)

  • 이도재;이경구;박범수;이광민;박상원
    • 한국재료학회지
    • /
    • 제16권5호
    • /
    • pp.277-284
    • /
    • 2006
  • The alloys were prepared by a non-consumable vacuum arc melting and homogenized at $1050^{\circ}C$ for 24 hrs. Two kind of surface modifications were performed alkali treatment in 5.0M NaOH solution subsequent and heat treatment in vacuum furnace at $600^{\circ}C$, and were oxidizing treatment at the temperature range of 550 to $750^{\circ}C$ for 30 minutes. After surface modification, these samples were soaked in SBF which consists of nearly the same ion concentration as human blood plasma. Cytotoxicity tests were performed in MTT assay treated L929 fibroblast cell culture, using indirect methods. A porous and thin activated layer was formed on Titanium and Ti-8Ta-3Nb alloy by the alkali treatment. A bone-like hydroxyapatite was nucleated on the activated porous surfaces during the in vitro test. However, Ti-8Ta-3Nb alloys showed better bioactive properties than Titanium. According to XRD results, oxide layers composed of mostly $TiO_2$(rutile) phases. Cytotoxicity test also revealed that moderate oxidation treatment lowers cell toxicity and Ti-8Ta-3Nb alloy showed better results compared with Titanium.

Effect of Terminalia chebula fruit on anaphylaxis by anal therapy

  • Shin, Hye-Young;Lee, Kyung-Bo;Jung, Yun-Hee;Kim, Eun-Ah;Lee, Mi-Young;Lee, Mi-Ri;Kim, Sang-Yong;Kim, Sang-Hyun;Shin, Tae-Yong
    • Advances in Traditional Medicine
    • /
    • 제3권2호
    • /
    • pp.56-62
    • /
    • 2003
  • The effect of aqueous extract of Terminalia chebula fruit (Combretaceae) (TCAE) by anal administration on mast cell-dependent immediate-type anaphylactic reactions was investigated. TCAE (0.005 to 1 g/kg) inhibited systemic anaphylaxis induced by compound 48/80 in mice. When TCAE was pretreated at the same concentrations with systemic anaphylaxis, the plasma histamine levels were reduced in a dose-dependent manner. TCAE (0.1 and 1 g/kg) also significantly inhibited local anaphylaxis activated by anti-DNP IgE. TCAE (0.001 to 1 mg/ml) dose-dependently inhibited the histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. Moreover, TCAE (0.01 and 0.1 mg/ml) had a significant inhibitory effect on anti-DNP IgE-mediated tumor necrosis $factor-{\alpha}$ $(TNF-{\alpha})$ production from RPMC. These results provide evidence that anal therapy of TCAE may be beneficial in the treatment of systemic and local mast cell-dependent anaphylaxis.

Co-expression of a novel ankyrin-containing protein, rSIAP, can modulate gating kinetics of large-conductance calcium-activated potassium channel from rat brain.

  • Lim, Hyun-Ho;Park, Chul-Seung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.45-45
    • /
    • 2003
  • We isolated a novel ankyrin-repeat containing protein, rSIAP (rSlo Interacting Ankyrin-repeat Protein), as an interacting protein to the cytosolic domain of the alpha-subunit of rat large-conductance Ca$\^$2+/-activated K$\^$+/ channel (rSlo) by yeast two-hybrid screening. Affinity pull-down assay showed the direct and specific interaction between rSIAP and rSlo domain. The channel-binding proteins can be classified into several categories according to their functional effects on the channel proteins, i.e. signaling adaptors, scaffolding net, molecular tuners, molecular chaperones, etc. To obtain initial clues on its functional roles, we investigated the cellular localization of rSIAP using immunofluorescent staining. The results showed the possible co-localization of rSlo and rSIAP protein near the plasma membrane, when co-expressed in CHO cells. We then investigated the functional effects of rSIAP on the rSlo channel using electrophysiological means. The co-expression of rSIAP accelerated the activation of rSlo channel. These effects were initiated at the micromolar [Ca$\^$2+/]$\_$i/ and gradually increased as [Ca$\^$2+/]$\_$i/ raised. Interestingly, rSIAP decreased the inactivation kinetics of rSlo channel at micromolar [Ca$\^$2+/]$\_$i/, while the rate was accelerated at sub-micromolar [Ca$\^$2+/]$\_$i/. These results suggest that rSIAP may modulate the activity of native BK$\_$Ca/ channel by altering its gating kinetics depending on [Ca$\^$2+/]$\_$i/. To localize critical regions involved in protein-protein interaction between rSlo and rSIAP, a series of sub-domain constructs were generated. We are currently investigating sub-domain interaction using both of yeast two-hybrid method and in vitro binding assay.

  • PDF

리튬이온 커패시터의 음극도핑 및 전기화학특성 연구 (Study on the Electrochemical Characteristics of Lithium Ion Doping to Cathode for the Lithium Ion Capacitor)

  • 최성욱;박동준;황갑진;유철휘
    • 한국수소및신에너지학회논문집
    • /
    • 제26권5호
    • /
    • pp.416-422
    • /
    • 2015
  • Lithium Ion capacitor (LIC) is a new storage device which combines high power density and high energy density compared to conventional supercapacitors. LIC is capable of storing approximately 5.10 times more energy than conventional EDLCs and also have the benefits of high power and long cycle-life. In this study, LICs are assembled with activated carbon (AC) cathode and pre-doped graphite anode. Cathode material of natural graphite and artificial graphite kinds of MAGE-E3 was selected as the experiment proceeds. Super-P as a conductive agent and PTFE was used as binder, with the graphite: conductive agent: binder of 85: 10: 5 ratio of the negative electrode was prepared. Lithium doping condition of current density of $2mA/cm^2$ to $1mA/cm^2$, and was conducted by varying the doping. Results Analysis of Inductively Coupled Plasma Spectrometer (ICP) was used and a $1mA/cm^2$ current density, $2mA/cm^2$, when more than 1.5% of lithium ions was confirmed that contained. In addition, lithium ion doping to 0.005 V at 10, 20 and $30^{\circ}C$ temperature varying the voltage variation was confirmed, $20^{\circ}C$ cell from the low internal resistance of $4.9{\Omega}$ was confirmed.

PGC-1α 형질전환 생쥐에서 마늘 분말의 체지방 감소 효과 (The Body Fat-lowering Effect of Garlic Powder in Peroxisome Proliferator-activated Receptor γ Coactivator-1α (PGC-1α)-luciferase Transgenic Mice)

  • 이막순;김양하
    • 한국식품영양학회지
    • /
    • 제30권5호
    • /
    • pp.900-907
    • /
    • 2017
  • This study was performed to investigate the body fat-lowering effect of garlic powder in peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$)-luciferase transgenic mice (TG). In this study, we generated transgenic mice with a PGC-$1{\alpha}$ promoter (-970/+412 bp) containing luciferase as a reporter gene. Mice were fed a 45% high-fat diet for 8 weeks to induce obesity. Subsequently, mice were maintained on either a high-fat control diet (CON), or high-fat diets supplemented with 2% (GP2) or 5% (GP5) garlic powder for an additional 8 weeks. Dietary garlic powder reduced the body weight in the GP2 and GP5 groups, compared to the CON group. Furthermore, garlic supplementation significantly decreased the plasma levels of triglycerides, total cholesterol, and leptin in the GP5 group, compared to the CON group. Specifically, luciferase activity in liver, white adipose tissue (WAT), and brown adipose tissue (BAT) was increased by garlic supplementation in a dose-dependent manner. These results suggest that the body fat-lowering effect of garlic powder might be related to PGC-$1{\alpha}$ by the increase in luciferase activity in liver, WAT, and BAT. Furthermore, transgenic mice might be useful for evaluating the body fat-lowering effect of various health functional foods.

Effect of reduced energy density of close-up diets on metabolites, lipolysis and gluconeogenesis in Holstein cows

  • Huang, Wenming;Wang, Libin;Li, Shengli;Cao, Zhijun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권5호
    • /
    • pp.648-656
    • /
    • 2019
  • Objective: An experiment was conducted to determine the effect of reduced energy density of close-up diets on metabolites, lipolysis and gluconeogenesis in cows during the transition period. Methods: Thirty-nine Holstein dry cows were blocked and assigned randomly to three groups, fed a high energy density diet (HD, 1.62 Mcal of net energy for lactation $[NE_L]/kg$ dry matter [DM]), a medium energy density diet (MD, $1.47Mcal\;NE_L/kg\;DM$), or a low energy density diet (LD, $1.30Mcal\;NE_L/kg\;DM$) prepartum; they were fed the same lactation diet to 28 days in milk (DIM). All the cows were housed in a free-stall barn and fed ad libitum. Results: The reduced energy density diets decreased the blood insulin concentration and increased nonesterified fatty acids (NEFA) concentration in the prepartum period (p<0.05). They also increased the concentrations of glucose, insulin and glucagon, and decreased the concentrations of NEFA and ${\beta}-hydroxybutyrate$ during the first 2 weeks of lactation (p<0.05). The plasma urea nitrogen concentration of both prepartum and postpartum was not affected by dietary energy density (p>0.05). The dietary energy density had no effect on mRNA abundance of insulin receptors, leptin and peroxisome proliferator-activated $receptor-{\gamma}$ in adipose tissue, and phosphoenolpyruvate carboxykinase, carnitine palmitoyltransferase-1 and peroxisome proliferator-activated $receptor-{\alpha}$ in liver during the transition period (p>0.05). The HD cows had higher mRNA abundance of hormone-sensitive lipase at 3 DIM compared with the MD cows and LD cows (p = 0.001). The mRNA abundance of hepatic pyruvate carboxy-kinase at 3 DIM tended to be increased by the reduced energy density of the close-up diets (p = 0.08). Conclusion: The reduced energy density diet prepartum was effective in controlling adipose tissue mobilization and improving the capacity of hepatic gluconeogenesis postpartum.

Silymarin과 작약감초탕 병용투여의 C57BL/6 마우스 간조직 지질축적 및 염증 억제효과 (Combined Treatment of Silymarin and Jakyakgamcho-tang Suppresses Hepatic Lipid Accumulation and Inflammation in C57BL/6 Mice)

  • 최정원;조수정;신미래;박해진
    • 대한본초학회지
    • /
    • 제37권5호
    • /
    • pp.17-26
    • /
    • 2022
  • Objective : The aim of the present study is to examine hepatic lipid-lowering and anti-inflammatory effects of silymarin combined with Jakyakgamcho-tang on non-alcoholic fatty liver disease in a high fat diet-induced obese mice model. Methods : C57BL/6 mice were divided into four dietary groups: (1) Normal, (2) Control (60% high-fat diet), (3) Control + silymarin 50 mg/kg/day (Silymarin), (4) Control + Silymarin 50 mg/kg/day + Jakyakgamcho-tang 100 mg/kg/day (SPG). After 12 weeks administration, mice were sacrificed and lipids and inflammation-related biomarkers were analyzed liver and plasma. Results : Silymarin and SPG treatments significantly lowered body and liver weights compared to the Control. Serumlipids (triglyceride (TG), total cholesterol) and pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin 1𝛽, and IL-6) concentrations were significantly lowered in the Silymarin and SPG groups than the Control group. Silymarin and SPG treatments suppressed hepatic TG level and hepatic lipid droplets compared to the Control. Theses two treatments significantly increased hepatic kinase B1 and AMP-activated protein kinase protein levels, and significantly decreased hepatic key lipogenic enzymes (acetyl-CoA carboxylase, fatty acid synthase and stearyl coenzyme A desaturase 1) protein levels than the Control. SPG also significantly increased hepatic fatty acid oxidation-related protein (peroxisome proliferator-activated receptor alpha and uncoupling protein 2) levels than the Control. Conclusions: Silymarin and SPG suppressed hepatic lipid accumulation by regulating hepatic protein expression, and lowered blood pro-inflammatory cytokines concentrations though the synergic effect of silymarin and Jakyakgamchotang was not clear.