• Title/Summary/Keyword: plantlets

Search Result 553, Processing Time 0.028 seconds

Effects of Membrane Filter and Sucrose Concentrations on the Growth of Balloon Flower (Platycodon grandiflorum A. DC.) Plantlets In Vitro (Membrane Filter와 Sucrose 농도가 도라지(Platycodon grandiflorum A. DC.) 기내 배양묘의 생장에 미치는 영향)

  • Choi, So-Ra;Kim, Myung-Jun;Eun, Jong-Seon;Ahn, Min-Sil;Lim, Hoi-Chun;Ryu, Jeong;You, Dong-Hyun
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.209-217
    • /
    • 2004
  • The shoots of balloon flower (Platycodon grandiflorum A. DC.) in vitro germinated from seeds were cultured on MS basal medium containing 0.1 mg/L NAA under the various sucrose concentrations and with/without membrane filter (MF) on the lid of vessel. The growth responses were checked to obtain healthy plantlets. The $CO_2$ and $C_2$H$_4$ concentration in vessel without MF were higher than those with MF. The $CO_2$ concentration without MF was increased as days in culture went by whereas the $C_2$H$_4$ concentration was decreased. The plant growth with MF and high sucrose concentration was good. Fresh and dry weight of plantlets cultured in sucrose 4.5% with MF were higher than those in no sucrose without MF. Also the content of chlorophyll of plantlets cultured with MF was high and the content of sugar was shown a similar results and a remarkable difference between MF treatments, especially. Stomata cultured with MF was closer than that without MF and mesophyll of leaf were more developed with MF or in high sucrose concentration. When the plantlets were transplanted in the pot at 25$\pm$2$^{\circ}C$, 75% relative humidity and low PPFD (photosynthetic photon flux density), the percentage of survival after 13 days without MF was 0% but it was 100% with MF regardless of sucrose concentrations.

Improvement of Growth of Potato (Solanum tuberosum L. cv. Dejima) Plants at In Vitro and Ex Vitro and Energy Efficiency by Environmental Control with Growth Stage in Photoautotrophic Micropropagation System (광독립영양 기내 미세증식 시스템에서 생육단계별 환경조절을 통한 감자의 기내 및 기외 생육과 에너지 효율 향상)

  • Oh, Myung-Min;Lee, Hoon;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • This study was conducted to evaluate the effect of optimized environment conditions with growth stage in photoautotrophic micropropagation on the growth of potato (Solanum tuberosum L. cv. Dejima) plantlets and energy efficiency. Optimum environment conditions at each stage were decided in our previous study. For the evaluation of optimized environment control, potato plantlets were cultured under four different conditions: photoautotrophic optimum conditions of photosynthetic photon flux density (PPFD) and $CO_2$ levels with growth stage (POG), photoautotrophic constant condition with average PPFD and $CO_2$ levels (PCA), photoauototrophic constant condition with maximum PPFD and $CO_2$ levels (PCM), and photomixotrophic conventional condition with 3% sucrose (PMC) as control. As a result, environment control with growth stage (POG) significantly promoted all the growth characteristics such as the number of nodes and unfolded leaves, shoot height, shoot diameter, and fresh and dry weights of potato grown in vitro. In addition, based on dry weight consumed electricity and $CO_2$ were the lowest in POG suggesting the highest energy efficiency among the treatments. After transferring potato plantlets to greenhouse, the plantlets under POG showed vigorous growth, which was pretty similar with those under PMC. The accumulations of dry matter in POG were 4.7 times in vitro and 3.8 times in greenhouse as much as those in the conventional control (PCM). Thus, we concluded that in vitro environment control with growth stage induced vigorous growth of potato plantlets both in vitro and in greenhouse with less energy consumption.

Optimalization of Flurprimidol Concentration for Improvement of Acclimatization Rate and In Vitro Growth Inhibition in Bioreactor Culture of Strawberry Plantlets via Bioreactor Culture (딸기 조직배양묘의 생물반응기 배양 시 Flurprimidol 처리농도에 따른 기내 생장억제 및 순화율 향상)

  • Kim, Hye Jin;Lee, Jong Nam;Kim, Ki Deog;Kwon, Gi Bum;Yoo, Dong Lim;Lim, Hak Tae;Yeoung, Young Rok
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.585-590
    • /
    • 2015
  • This study was conducted to improve the acclimatization rate of in vitro strawberry plantlets through bioreactor culture using the growth retardant flurprimidol. Different concentrations [0 (Control), 0.1, 0.5, 1.0, and $2.0mg{\cdot}L^{-1}$] of flurprimidol were added during bioreactor culture. After six weeks of treatments, various growth characteristics were investigated and in vitro plantlets were acclimated in the greenhouse. The growth rate of treated plantlets was much lower than that of control, and as the treatment concentration increased, the growth rate was much decreased. Shoots of plantlets treated with flurprimidol were shorter (2.2-3.7 cm) than those of control (7.9 cm). The number of roots per treated plant was around 11.6-34.2, compared with 51.8 in the control. Root length was also lower (0.88-3.08 cm) than control (4.36 cm). However, the number of new shoots and leaves increased in all treatments except for $2.0mg{\cdot}L^{-1}$ concentration. The root was partially decayed in $1.0mg{\cdot}L^{-1}$ concentration and was completely decayed in $2.0mg{\cdot}L^{-1}$. The survival rate in $0.1mg{\cdot}L^{-1}$ and $0.5mg{\cdot}L^{-1}$ concentrations was 100% and 23.3% respectively. After four weeks of acclimatization, the plantlets restarted growth, and growth characteristics of shoots and roots recovered to the levels of control, except for fresh weight. Based on our results, a concentration of $0.1mg{\cdot}L^{-1}$ flurprimidol is appropriate for improvement of acclimatization rate of in vitro strawberry plantlets in bioreactor culture.

In Vitro Flowering Response of Ocimum basilicum L.

  • Sudhakaran, S.;Sivasankari, V.
    • Journal of Plant Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.179-181
    • /
    • 2002
  • Nodal explants of Ocimum basilicum L. (Sweet basil, Lamiaceae), showed shoot proliferation after 7-10 days on MS media containing 1.5 mg/L kinetin. In vitro flowering was achieved from 90% of the shootlets which were sub cultured on a half strength MS media fortified with 5 mg/L BAP and 1 mg/L IAA. Cytokinin alone or in combination with $CA_3$and NAA resulted in shoot proliferation only. For rooting the plantlets were subcultured on MS basal medium supplemented with 3 mg/L NAA and rootlets emerged after 10 days of incubation. The survival percentage of transplanted plantlets was 70%.

Somatic Embryogenesis and Plant Regeneration in Tissue Cultures of Artemisia annua L.

  • Choi, Pil-Son;Min, Sung-Ran;Ko, Suk-Min;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.197-200
    • /
    • 2007
  • Mature seeds of Artemisia annua L. were placed onto Murashige and Skoog's (MS) medium supplemented with $4.52\;{\mu}M$ 2,4-dichlorophenoxyacetic acid (2,4-D). After 6 weeks of culture, off-white, compact calluses were formed on the plumule of seedlings at a frequency of 5.9%. Calluses were subcultured on the same medium. After an additional 2 weeks of subculture, calluses produced a few somatic embryos at a frequency of 28.8%. Upon transfer to MS basal medium, calluses producing a few somatic embryos gave rise to numerous somatic embryos, which subsequently developed into plantlets. Plantlets were successfully transplanted to potting soil and grown to maturity in a greenhouse.

Effect of photoperiod and light intensity on in vitro propagation of Alocasia amazonica

  • Jo, Eun-A.;Tewari, Rajesh Kumar;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • v.2 no.3
    • /
    • pp.207-212
    • /
    • 2008
  • Plantlets of Alocasia amazonica regenerated under a photon flux density (PFD) of 15 or $30{\mu}mol\;m^{-2}s^{-1}$ showed better growth and development than those grown under higher PFDs. While chlorophyll a and chlorophyll b decreased, the number of stomata increased with increasing PFD. Photoperiods also affected plantlet growth and stomatal development. Highest growth was observed for the short photoperiod (8/16 h) and for equinoctial (12/12 h) light and dark periods. Very few stomata developed in the leaves of plantlets grown under a short photoperiod (8/16 h) and the number of stomata increased with increasing light period. In conclusion, both light intensity and photoperiod independently affect growth of A. amazonica and development of stomata, depending on the intensity and duration of light treatment.

Rapid Propagation through Tissue Culture of Cudrania tricuspidata, Medicinal Plant

  • Lee, Cheul-Ho;Min, Ji-Yun;Jung, Ha-Na;Kim, Kyu-Sick;Choi, Myung-Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.5
    • /
    • pp.315-318
    • /
    • 2007
  • An effective rapid propagation method was established through in vitro cultures of the medicinal plant, Cudrania tricuspidata. In vitro plantlets were obtained from in vitro germinated seeds. The various levels of cytokinins (BAP, Kinetin and TDZ) were tested on multiple shoot formation from plantlets. BAP (1.0 mg/l) treatment induced highest number of multiple shoots. Single shoot cultures gave higher initial shoot numbers than 5 shoots per culture. Among the various culture media, the shoot elongation was optimal on 2 MS basal medium without growth regulators. The IAA (2.0 mg/l) treatment induced highest number of roots. IBA (2.0 mg/l) treatment more promoted in vitro root growth than other concentrations. Rooted shoots were transferred directly to small pots with an artificial soil and successfully acclimatized.

Effect of Plant Growth Regulators on Plant Regeneration Through Somatic Embryogenesis of Medicago sativa L.

  • Kim, Young-Sook;Kim, Mi-Young;Yang, Moon-Sik
    • Journal of Plant Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2004
  • An efficient plant regeneration system in alfalfa (Medicago sativa L.) through somatic embryogenesis was established. Embryogenic callus was obtained by culture of hypocotyl segments on MS medium with 0.02mg $L^{-1}$ IAA and 1.0mg $L^{-1}$ zeatin after 45 days of culture. Embryogenic calli were converted to the somatic embryos when transferred to either MS medium without plant growth regulators (PGRs) or MS medium containing various cytokinin (BA, kinetin and zeatin). Most of the somatic embryos were developed into plantlets on MS medium supplemented with 0.1 mg $L^{-1}$ kinetin. Also, secondary embryos appeared on the surface of primary embryo but they showed abnormal growth. Regenerated plantlets were transplanted to pots containing vermiculite and perlite for further analysis.

In Vitro Propagation of Zingiberaceae Species with Medicinal Properties

  • Keng, Chan Lai;Hing, Thong Weng
    • Journal of Plant Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.181-188
    • /
    • 2004
  • Zingiber officinale buds from the rhizomes were used to produce in vitro shoots. These explants produced the largest number of multiple shoots, 9.8 shoots per explant, when were cultured on MS (Murashige and Skoog 1962) medium supplemented with 2.0 mg/L benzyladenine (BA) and 2.0 mg/L indole butyric acid (IBA). This medium was also found to be suitable for in vitro propagation of other Zingiberaceae species: Alpinia conchigera, Alpinia galanga, Curcuma domestica, C. zedoaria and Kaempferia galanga. Both C. domestica and C. zedoaria produced more multiple shoots when were cultured in the liquid proliferation medium, MS medium containing 2.0 mg/L BA and 2.0 mg/L IBA. To maintain the in vitro plantlets of Zingiberaceae species, they were required to subculture every four weeks. After executing proper acclimatization protocol, in vitro plantlets of Alpinia galanga, A. conchigera, Curcuma domestica, C. zedoaria, Kaempferia galanga and Zingiber officinale could be successfully planted in the field with high percentage of survival.

An Efficient In vitro Propagation of Zanthoxylum piperitum DC.

  • Hwang, Sung-Jin;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.4
    • /
    • pp.316-320
    • /
    • 2003
  • A protocol is described for rapid multiplication of Zanthoxylum piperitum DC. (Rutaceae), an important aromatic and medicinal plant, through shoot-tip explant cultures. Murashige and Skoog (MS) medium supplemented with various concentrations of N-6-benzyladenine (BA), N-6-benzylaminopurine (BAP) and thidiazuron (TDZ), in single or in combination with ${\alpha}-naphthaleneacetic$ acid (NAA), was used to determine the rate of shoot proliferation. N-6-benzyladenine (BA) used at 0.5mg/l, was the most effective in initiating multiple shoot proliferation at the rate of 23 microshoots per shoot-tip explants after 40 days of culture. Shoot multiplication increased 1.2-fold in each successive subculture. Induction of rooting (98%) was achieved by transferring the shoots to the same basal medium containing 2 mg/l indole-3-butyric acid (IBA). Plantlets went through a hardening phase in a controlled growth chamber, prior to in vivo transfer. These results represented that possible application for the mass production of plantlets through in vitro culture system of Zanthoxylum piperitum DC.